Math, asked by taskmaster482, 11 months ago

q) x² - 2 (x + y) - y2​

Answers

Answered by Frannyng
0

Answer:

Here

P=y^2(x-y), Q=x^2(x-y),Q=z(x^2+y^2)P=y  

2

(x−y),Q=x  

2

(x−y),Q=z(x  

2

+y  

2

)

{dx \over y^2(x-y)}={dy \over x^2(x-y)}={dz \over z(x^2+y^2)}=  

y  

2

(x−y)

dx

​  

=  

x  

2

(x−y)

dy

​  

=  

z(x  

2

+y  

2

)

dz

​  

=

From 1st and 2nd fraction, we get  

(x^2(x-y))dx=(y^2(x-y))dy(x  

2

(x−y))dx=(y  

2

(x−y))dy

Dividing by (x-y),(x−y), we get

x^2dx-y^2dy=0x  

2

dx−y  

2

dy=0

d(x^3-y^3)=0d(x  

3

−y  

3

)=0

Integrating, we get  

x^3-y^3=c_1x  

3

−y  

3

=c  

1

​  

 

If we take

P_1={1 \over y}, Q_1=-{1 \over x},R_1={1 \over z}P  

1

​  

=  

y

1

​  

,Q  

1

​  

=−  

x

1

​  

,R  

1

​  

=  

z

1

​  

 

then

PP_1+QQ_1+RR_1=PP  

1

​  

+QQ  

1

​  

+RR  

1

​  

=

={1 \over y}(y^2(x-y))-{1 \over x}(x^2(x-y))+{1 \over z}(z(x^2+y^2))==  

y

1

​  

(y  

2

(x−y))−  

x

1

​  

(x  

2

(x−y))+  

z

1

​  

(z(x  

2

+y  

2

))=

=xy-y^2-x^2+xy+x^2+y^2=0=xy−y  

2

−x  

2

+xy+x  

2

+y  

2

=0

Thus for the given system of equations, we have  

{dx \over y^2(x-y)}={dy \over x^2(x-y)}={dz \over z(x^2+y^2)}=  

y  

2

(x−y)

dx

​  

=  

x  

2

(x−y)

dy

​  

=  

z(x  

2

+y  

2

)

dz

​  

=

={dx/y-dy/x+dz/z \over 0}=  

0

dx/y−dy/x+dz/z

​  

 

{dx \over y}=-{dy \over x}={dz \over z}  

y

dx

​  

=−  

x

dy

​  

=  

z

dz

​  

 

From 1st and 2nd fraction, we get

{dx \over y}=-{dy \over x}  

y

dx

​  

=−  

x

dy

​  

 

xdx+ydy=0xdx+ydy=0

x^2+y^2=c_2x  

2

+y  

2

=c  

2

​  

 

Let F be an arbitrary differentiable function. Then the general equation of a partial differential equation is

F(x^3-y^3,x^2+y^2)=0F(x  

3

−y  

3

,x  

2

+y  

2

)=0

Step-by-step explanation:

Similar questions