Math, asked by cpreeti401, 25 days ago

-Q047: A silver wire when bent in the form of a square encloses an area of 4 cm square. Now if the same wire is bent to form a circle, the area enclosed by it would be approximately? ​

Answers

Answered by navanithishere
0

Answer:

The area of the circle enclosed by the wire is 5.0955cm².

Step-by-step explanation:

The silver wire is first bent to form a square.

The area of the square is 4cm².

Area of a square = (length of its side)²

∴ Length of the side = √(area)

                                  = √4cm²

                                  = 2cm.

Therefore the length of the side is 2cm.

Now length of the wire is same as the perimeter of the square.

Perimeter of the square = 4 × length of side

                                        = 4 × 2cm

                                        = 8cm.

Hence the length of the wire is 8cm.

Now, this wire is bent to form a circle. Then the perimeter of the circle is same as the length of the wire, which is 8cm.

Perimeter of a circle = 2\pi r

                            2\pi r=8

                             \pi r=\frac{8}{2}

                             \pi r=4

                              r=\frac{4}{\pi }.

We have to calculate the area of the circle.

Area of a circle = \pi r^{2}

                         = \pi  \times ({\frac{4}{\pi } )^2}

                         = \pi \times \frac{16}{\pi ^{2} }

                         = \frac{16}{\pi }

                         = \frac{16}{3.14}

                         = 5.0955cm^{2}.

That is, the area of the circle enclosed by the wire is 5.0955cm².

Similar questions