Q1.1 - cos theta by sin theta is equals to sin theta by 1 + cos theta prove it
Answers
Answered by
0
.
.
.
..
..
.
.
.
.don't know
Answered by
7
Step-by-step explanation:
Given :
To prove :
LHS = RHS
Proof :
we know that :- (a+b) (a-b) = a²-b²
Now , 1 - cos²θ = sin² θ
Now we will cancel out sin θ from numerator and denominator :-
Therefore, LHS = RHS.
Hence proved
Learn more:
sin²A + cos²A = 1
1 - sin²A = cos²A
1 - cos²A = sin²A
1 + tan²A = sec²A
sec²A - tan²A = 1
sec²A - 1 = tan²A
1 + cot²A = cosec²A
cosec²A - 1 = cot²A
cosec²A - cotA = 1
cotA = 1/tanA
cotA = cosA/sinA
Sin 30° = 1/2
cos 30° = √3/2
tan 30° = 1/√3
Sin 45° = 1/√2
cos 45° = 1/√2
tan 45° = 1
Sin 60° = √3/2
cos 60° = 1/2
tan 60° = √3
Sin 90° = 1
cos 90° = 0
tan 90° = infinite
cosec x = 1/ sin x
sec x = 1/ cosx
cot x = 1/tan x
Similar questions