Q1.4. Simplify the following expressions,
a) -150+[{(-24) - 50 + (-10 + 16 × 2 - 17)} +120]
b) 18+ (-15 + 3 of {-51+ 3 +62- -5x5}]
e) 125 - (-20 of (-16) + {15 + (-5)}]
d) -120 = [-45-{15 -10 × (-18 - 15)}]
Answers
Explanation:
How to solve
step 1: Firstly we will solve values inside small brackets.
Step 2: Expanding the small brackets and then solve with the larger brackets values .
Step 3: Now, Expanding the large brackets values and together solve both the values .
Step 4:Now,solve with the outside values and evaluate it is your simplest form.
a) -150+[{(-24) - 50 + (-10 + 16 × 2 - 17)} +120]
➙-150+[{( -24)-50+(-10+32-17)}+120]
➙-150+[{(-24)-50+(22-17)}+120]
➙-150+[(-24)-50+5+120]
➙-150+[ -24-50+125]
➙-150+[ -74+125]
➙150-[ 51]
➙150-51= 99
b) 18+ (-15 + 3 of {-51+ 3 +62- -5x5}]
➙18+(-15+3 × { -51+3+62-(-25)}]
➙18+(-12×{ 14+25})
➙18+(-12×39)
➙18+(-468)
➙18-468
= - 450
c) 125 - (-20 of (-16) + {15 + (-5)}]
➙125-(-20×(-16)+(15-5)
➙125-(32+10)
➙125-42
=83
d)-120 = [-45-{15 -10 × (-18 - 15)}]
➙-120= [ -45-{ 5 × (-23)}]
➙-120= [ -45 -( -115)]
➙-120= [ -45+115]
➙-120= 70
➙-120-70
= -190
★
a)-150+[{(-24) - 50 + (-10 + 16 × 2 - 17)} +120]
→-150+[{(-24)-50+(-10+32-17)}+120]
→-150+[{(-24)-50+(22-17)}+120]
→-150+[(-24)-50+5+120]
→-150+[-24-50+125]
→-150+[-74+125]
→150-[51]
-150-51 99.
______________________
b) 18+ (-15 + 3 of (-51+ 3 +62--5x5}]
18+(-15+3 x {-51+3+62-(-25)}]
→18+(-12×{ 14+25})
→18+(-12-39)
→18+(-468)
-18-468
= - 450.
______________________
c) 125-(-20 of (-16)+(15+ (-5)}]
-125-(-20×(-16)+(15-5)
→125-(32+10)
→125-42
=83
_______________________
d)-120 = [-45-15 -10 × (-18 - 15)}]
-120= [-45-5 × (-23)}]
→-120= [-45-(-115)]
→-120= [-45+115]
→-120= 70
→-120-70
= -190
- Please Drop Some Thanks.