Q1.a = log {12 base 24}, b = log {24 base 36}, c = log {36 base 48}, then 1 + abc is equal to?
Answers
Step-by-step explanation:
Given :-
To find :-
Solution :-
Answer :-
Answer :-The correct answer is option (c) 2bc
Answer:
Step-by-step explanation:
Given :-
\begin{gathered}\begin{gathered} \rm \rightarrow a = log_{24}(12) \\ \rm\rightarrow b = log_{36}(24) \\\rm\rightarrow c = log_{48}(36) \end{gathered} < /p > < p > \end{gathered}
→a=log
24
(12)
→b=log
36
(24)
→c=log
48
(36)
</p><p>
To find :-
\rm 1+abc < /p > < p >1+abc</p><p>
Solution :-
\rm \longrightarrow 1+abc⟶1+abc
\rm\longrightarrow1 + \bigg( log_{24}(12) \times log_{36}(24) \times log_{48}(36) \bigg)⟶1+(log
24
(12)×log
36
(24)×log
48
(36))
\begin{gathered}\begin{gathered}\rm\longrightarrow1 + \bigg( \dfrac{log(12)}{log(24)} \times \dfrac{log(24)}{log({36})} \times \dfrac{log(36)}{log({48})} \bigg) \\ \\ \\ \rm\longrightarrow1 + \bigg( \dfrac{log(12)}{1} \times \dfrac{1}{1} \times \dfrac{1}{log({48})} \bigg)\\ \\ \\ \rm\longrightarrow1 + \bigg( \dfrac{log(12)}{log({48})} \bigg)\\ \\ \\ \rm\longrightarrow 1 + log_{48}(12) \\ \\ \\ \rm\longrightarrow log_{48}(48) + log_{48}(12) \\ \\ \\ \rm\longrightarrow log_{48 }(48 \times 12) \\ \\ \\ \rm\longrightarrow log_{48}{576}\\ \\ \\ \rm\longrightarrow log_{48}{ {(24)}^{2} } = 2log_{48}{ {(24)} }\\ \\ \\ \rm\longrightarrow 2log_{48}{ {(24)} } \times log_{36}{ {(36)} }\\ \\ \\ \rm\longrightarrow 2 \times \dfrac{log_{24}}{log_{48}} \times \dfrac{log_{36}}{log_{36}} \\ \\ \\ \rm\longrightarrow 2 \times \dfrac{log_{24}}{log_{36}} \times \dfrac{log_{36}}{log_{48}} \\ \\ \\ \rm\longrightarrow 2 \times b \times c\\ \\ \\ \rm\longrightarrow 2bc\end{gathered} \end{gathered}
⟶1+(
log(24)
log(12)
×
log(36)
log(24)
×
log(48)
log(36)
)
⟶1+(
1
log(12)
×
1
1
×
log(48)
1
)
⟶1+(
log(48)
log(12)
)
⟶1+log
48
(12)
⟶log
48
(48)+log
48
(12)
⟶log
48
(48×12)
⟶log
48
576
⟶log
48
(24)
2
=2log
48
(24)
⟶2log
48
(24)×log
36
(36)
⟶2×
log
48
log
24
×
log
36
log
36
⟶2×
log
36
log
24
×
log
48
log
36
⟶2×b×c
⟶2bc
Answer :-
Answer :-The correct answer is option (c) 2bc