Math, asked by rawatanshika45127, 9 months ago

Q1) Determine the equation of the hyperbola which satisfies the given conditions: Foci (0, ±13), the conjugate axis is of length 24.


☞ No COPPIED and IRRELEVANT ANSWERS ❌❌​​

Answers

Answered by BrainlyPopularman
22

GIVEN :

Foci of hyperbola is (0 , ±13) .

• Length of conjugated axis is 24.

TO FIND :

• Equation of hyperbola = ?

SOLUTION :

▪︎ Equation of hyperbola –

 \\ \implies\bf \dfrac{ {y}^{2} }{{a}^{2}}  -  \dfrac{ {x}^{2} }{{b}^{2}} = 1  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \{ \because \:  \: foci \:  \: on \:  \: y - axis \} \\

▪︎ Standard foci => (0, ±c)

• So that –

=> c = 13

• We know that –

 \\ \bf \implies Length \:  \: of \:  \: conjugated \:  \: axis = 2b\\

• According to question –

 \\ \bf \implies Length \:  \: of \:  \: conjugated \:  \: axis = 24\\

 \\ \bf \implies 2b= 24\\

 \\ \bf \implies b= \cancel\dfrac{24}{2}\\

 \\ \bf \implies b=12\\

• We also know that –

 \\ \bf \implies a= \sqrt{ {c}^{2} -  {b}^{2}  } \\

• Now put the values –

 \\ \bf \implies a= \sqrt{ {(13)}^{2} -  {(12)}^{2}  } \\

 \\ \bf \implies a= \sqrt{169-144} \\

 \\ \bf \implies a= \sqrt{25} \\

 \\ \bf \implies a= \pm5 \\

• Now put the values of 'a' & 'b' in standard equation –

 \\ \implies\bf \dfrac{ {y}^{2} }{{( \pm5)}^{2}}  -  \dfrac{ {x}^{2} }{{(12)}^{2}} = 1\\

 \\ \implies\bf \large { \boxed{ \bf \dfrac{ {y}^{2} }{25}  -  \dfrac{ {x}^{2} }{144} = 1}}\\

Answered by SaI20065
93

\huge\sf\underline\pink{given:-}

♡ foci (0,±13), the conjugate axis is of length 24

Here the foci are on the y-axis.

♡Therefore, the equation of the hyperbola is of the form:- 

\rightarrow\frac{{y}^{2}}{{a}^{2}}-{{x}^{2}}{{b}^{2}}

\rightarrowSince the foci are (0,±13)ae=c=13

\small\sf\underline\pink{Since the length of the conjugate axis is} 24,⇒2b=24⇒b=12

We know that a²+b²=c²

\rightarrow∴a²+122=132

\rightarrowa²=169−144=25

Thus the equation of the hyperbola is y²/25 -x²/144

Similar questions