Math, asked by satyamManshtra, 1 month ago

Q1.Differentiate the function
{x}^{cosx} + (cos {x})^{x}x
cosx
+(cosx)
x

please, help​

Answers

Answered by PRINCE100001
4

Step-by-step explanation:

Answer:

\sf \dfrac{dy}{dx} =x^{cos\:x} \bigg(\dfrac{cos\:x}{x} -sin\:x\:log\:x \bigg)+(cos\:x)^x\bigg(log\:cos\:x-x\:tan\:x \bigg)

Step-by-step explanation:

Given:

\sf y= x^{cos\:x}+(cos\:x)^xy

To Find:

dy/dx

Solution:

Let us assume that,

\sf u=x^{cos\:x}

and

\sf v=(cos\:x)^x

Hence,

\sf \dfrac{dy}{dx} =\dfrac{du}{dx} +\dfrac{dv}{dx}---(1)

Finding du/dx

We know that,

\sf u=x^{cos\:x}

Taking log on both sides we get,

\sf log\:u=log\:x^{cos\:x}

log u = cos x log x

Now differentiate on both sides with respect to x using chain rule,

\sf\dfrac{1}{u} \:\dfrac{du}{dx} =\dfrac{1}{x}\times cos\:x+log\:x\times -sin\:x

\sf \dfrac{du}{dx} =u\bigg(\dfrac{cos\:x}{x} -sin\:x\:log\:x \bigg)

Substitute the value of u,

\sf \dfrac{du}{dx} =x^{cos\:x}\bigg(\dfrac{cos\:x}{x} -sin\:x\:log\:x \bigg)---(2)

Now finding dv/dx

We know,

\sf v=(cos\:x)^x

Taking log on both sides,

log v = x log cos x

Differentiate on both sides w.r.t x using chain rule,

\sf \dfrac{1}{v} \: \dfrac{dv}{dx} =x\times \dfrac{1}{cos\:x} \times -sin\:x+log\:cos\:x\times 1

\sf \dfrac{1}{v} \: \dfrac{dv}{dx} =x\times -tan\:x+log\:cos\:x

\sf \dfrac{dv}{dx} =v\bigg(log\:cosx-x\:tan\:x \bigg)

Give back the value of v,

\sf \dfrac{dv}{dx} =(cos\:x)^x\bigg(log\:cosx-x\:tan\:x \bigg)---(3)

Substitute 2 and 3 in equation 1,

\sf \dfrac{dy}{dx} =x^{cos\:x} \bigg(\dfrac{cos\:x}{x} -sin\:x\:log\:x \bigg)+(cos\:x)^x\bigg(log\:cos\:x-x\:tan\:x \bigg)

Answered by XxBRANDEDGIRLxX
0

Seoul, officially the Seoul Special Metropolitan City, is the capital and largest metropolis of the Republic of Korea (commonly known as South Korea). Seoul is the world's 16th largest city, and forms the heart of the Seoul Capital Area, which includes the surrounding Incheon metropolis and Gyeonggi province.

Similar questions