Math, asked by lMsPrincessl, 2 months ago

Q1.Find 2 to -2 integration (|x+1|+|x|)dx is the value integral.

Answers

Answered by PRINCE100001
7

Step-by-step explanation:

we have to find

\int\limits^2_{-2}{(|x+1|+|x|)}\,dx

solution : break the modulus function and find intervals.

|x + 1| = 0 ⇒x = -1

|x| = 0 ⇒x = 0

so intervals are -2 to -1 , -1 to 0 and 0 to 2.

case 1 : -2 < x < -1

|x + 1| + |x| = -x - 1 - x = -2x - 1

case 2 : - 1 < x < 0

|x + 1| + |x| = x + 1 - x = 1

case 3 : 0 < x < 2

|x + 1| + |x| = x + 1 + x = 2x + 1

now

\int\limits^2_{-2}{(|x+1|+|x|)}\,dx </p><p>

= \int\limits^2_0{(2x+1)}\,dx+\int\limits^0_{-1}{(1)}\,dx+\int\limits^{-1}_{-2}{(-2x-1)}\,dx </p><p>

= \left[x^2+x\right]^2_0+\left[x\right]^{-1}_0-\left[x^2+x\right]^{-1}_{-2}

= (2² + 2) + (1) -[(-1)² + (-1) - (-2)² - (-2)]

= 6 + 1 - [1 - 1 - 4 + 2 ]

= 6 + 1 + 2

= 9

Therefore the value of

\int\limits^2_{-2}{(|x+1|+|x|)}\,dx </p><p></p><p>	</p><p>  \:  is \:  9.

Answered by lohitjinaga2
1

Answer:

Step-by-step explanation:</p><p></p><p>we have to find</p><p></p><p>\int\limits^2_{-2}{(|x+1|+|x|)}\,dx−2∫2(∣x+1∣+∣x∣)dx</p><p></p><p>solution : break the modulus function and find intervals.</p><p></p><p>|x + 1| = 0 ⇒x = -1</p><p></p><p>|x| = 0 ⇒x = 0</p><p></p><p>so intervals are -2 to -1 , -1 to 0 and 0 to 2.</p><p></p><p>case 1 : -2 &lt; x &lt; -1</p><p></p><p>|x + 1| + |x| = -x - 1 - x = -2x - 1</p><p></p><p>case 2 : - 1 &lt; x &lt; 0</p><p></p><p>|x + 1| + |x| = x + 1 - x = 1</p><p></p><p>case 3 : 0 &lt; x &lt; 2</p><p></p><p>|x + 1| + |x| = x + 1 + x = 2x + 1</p><p></p><p>now</p><p></p><p>\int\limits^2_{-2}{(|x+1|+|x|)}\,dx &lt; /p &gt; &lt; p &gt;−2∫2(∣x+1∣+∣x∣)dx&lt;/p&gt;&lt;p&gt;</p><p></p><p>= \int\limits^2_0{(2x+1)}\,dx+\int\limits^0_{-1}{(1)}\,dx+\int\limits^{-1}_{-2}{(-2x-1)}\,dx &lt; /p &gt; &lt; p &gt;=0∫2(2x+1)dx+−1∫0(1)dx+−2∫−1(−2x−1)dx&lt;/p&gt;&lt;p&gt;</p><p></p><p>= \left[x^2+x\right]^2_0+\left[x\right]^{-1}_0-\left[x^2+x\right]^{-1}_{-2}=[x2+x]02+[x]0−1−[x2+x]−2−1</p><p></p><p>= (2² + 2) + (1) -[(-1)² + (-1) - (-2)² - (-2)]</p><p></p><p>= 6 + 1 - [1 - 1 - 4 + 2 ]</p><p></p><p>= 6 + 1 + 2</p><p></p><p>= 9</p><p></p><p>Therefore the value of</p><p></p><p>\int\limits^2_{-2}{(|x+1|+|x|)}\,dx &lt; /p &gt; &lt; p &gt; &lt; /p &gt; &lt; p &gt; &lt; /p &gt; &lt; p &gt; \: is \: 9.−2∫2(∣x+1∣+∣x∣)dx&lt;/p&gt;&lt;p&gt;&lt;/p&gt;&lt;p&gt;&lt;/p&gt;&lt;p&gt;is9.</p><p></p><p>

Similar questions