Math, asked by divyabaghel44, 2 months ago

Q1 Find the additive inverse of -6/-3

Q2 Subtract ⅔ from 5/4

Q3 What should be subtracted from 4/7 to get ¾?

Q4 Verify that-(-x)=x for i) x=11/15

Q5 Find the multiplicative inverse of i) -1×(-⅖)

Q6 Multiply 6/13 by the reciprocal of -7/16?

Q7 Fill in the blanks

i) Zero has _______ reciprocal .

ii) The number ____ and_____ are their own reciprocal.

Q8 Write five rational numbers which are smaller than 2?

Q9 Find -3/5×0

Q10 Verify ;i)3/4×(-⅓+⅚)={3/4×(-⅓)}+(3/4×5/6)

Q11 Verify a×(b+c)=(a×b)+(a×c) for:i)a=⅚, b=-⅘, c=-7/10

Q12 Simplify and express the result in the lowest form :i)5/8×-6/20×11/18×-4/33

Q13 By what number should 5/3 be multiplied to get the product as -5/11?

Q14 Evaluate (-7/11)÷(7/11)

Q15 Write the law of exponent of rational numbers (some important notes)

Answers

Answered by SachinGupta01
24

Solution : 1

\sf The  \: additive \:  inverse  \: of  \:  \dfrac{ - 6}{ - 3}  \: is \:  \dfrac{- 6}{3}

━━━━━━━━━━━━━━━━━━━━━━━━

Solution : 2

\sf \implies  Subtract \:   \dfrac{2}{3}  \: from \:  \dfrac{5}{4}

\sf \implies \dfrac{5}{4}  -   \dfrac{2}{3}

\sf \implies \dfrac{5 \times 3 = 15}{4 \times 3 = 12}  -   \dfrac{2 \times 4 = 8}{3 \times 4 = 12}

\sf \implies \dfrac{ 15}{ 12}  -   \dfrac{8}{12}

\sf \implies \dfrac{ 15 - 8}{ 12}   =  \dfrac{7}{12}

━━━━━━━━━━━━━━━━━━━━━━━━

Solution : 3

\sf \implies   \dfrac{4}{7}  - x =  \dfrac{3}{4}

\sf \implies  - x = \dfrac{3}{4}  -  \dfrac{4}{7}

\sf \implies  - x = \dfrac{21 - 16}{28}

\sf \implies  - x = \dfrac{5}{28}

\sf \implies  x = \dfrac{ - 5}{28}

━━━━━━━━━━━━━━━━━━━━━━━━

Solution : 4

\sf Verify \:  that, -(-x) = x

\sf Here, value  \: of  \: x =  \dfrac{11}{15}

\sf So, - \bigg(-\dfrac{11}{15}  \bigg) =\dfrac{11}{15}

\implies \bf [ \: Note  : -,-  \: is \:  + \: ]

\sf Hence,  \: \dfrac{11}{15}  =\dfrac{11}{15}

━━━━━━━━━━━━━━━━━━━━━━━━

Solution : 5

\bf  \underline{To  \: find} :  \sf Multiplicative \:  inverse \:  of  \:  - 1 \times  \bigg(  \dfrac{ - 2}{5} \bigg)

\implies  - 1 \times  \bigg(  \dfrac{ - 2}{5} \bigg)  =  \dfrac{2}{5}

\sf  Now, multiplicative \:  inverse \:  of  \:  \dfrac{2}{5}  \: is \:  \dfrac{5}{2}

━━━━━━━━━━━━━━━━━━━━━━━━

Solution : 6

\sf Multiply  \:  \dfrac{6}{13}  \: by \: reciprocal \:  of \:  \dfrac{ - 7}{16}

\sf  The \:  reciprocal \:  of  \: \dfrac{ - 7}{16}  \: is \: \dfrac{ - 16}{7}

\sf Now,  \dfrac{6}{13}  \times  \dfrac{ - 16}{7}  =  \dfrac{ - 96}{91}

━━━━━━━━━━━━━━━━━━━━━━━━

Solution : 7

\bf \underline{ Fill \:  in \:  the \:  blanks} :

\sf \: i) \:  Zero \:  has \: \underline{NO}  \: reciprocal .

\sf ii)  \: The  \: number \:  \underline{1 }\:  and \:   \underline{- 1 }\:  are \:  their \:  own \:  reciprocal.

━━━━━━━━━━━━━━━━━━━━━━━━

Solution : 8

Five rational numbers which are smaller than 2 are 1, 0, -1, -2, -3

━━━━━━━━━━━━━━━━━━━━━━━━

Solution : 9

\sf Find \:   \dfrac{ - 3}{5}  \times 0

\sf  \implies   \dfrac{ - 3}{5}  \times 0 = 0

━━━━━━━━━━━━━━━━━━━━━━━━

Solution : 10

\bf \underline{ Verify \:  that},

\sf  \dfrac{3}{4} \times  \bigg(  \dfrac{ - 1}{3} +  \dfrac{5}{6}  \bigg) =  \bigg[ \dfrac{3}{4}    \times \bigg(\dfrac{ - 1}{3}   \bigg) \bigg]   +  \bigg( \dfrac{3}{4}  \times  \dfrac{5}{6}   \bigg)

\sf\implies  \dfrac{3}{4} \times  \bigg(   \dfrac{ - 2 + 5}{6}  \bigg) =   \dfrac{3}{4}    \times \dfrac{ - 1}{3}     +   \dfrac{3}{4}  \times  \dfrac{5}{6}

\implies \sf  \dfrac{3}{4} \times   \dfrac{3}{6}  =    \dfrac{ - 1}{4}   +    \dfrac{5}{8}

\implies\sf   \dfrac{3}{8}   =    \dfrac{ - 2 + 5}{8}

\implies\sf   \dfrac{3}{8}   =     \dfrac{3}{8}

\bf Hence \:  proved \:  !

━━━━━━━━━━━━━━━━━━━━━━━━

Solution : 11

\sf Verify \:  that, a \times (b + c) = (a \times b) + (a \times c)

\sf Here, a =  \dfrac{5}{6 \: } \:  ,  \: b =  \dfrac{ - 4}{5}  \: and \: c =  \dfrac{7}{10}

\sf  \implies  \dfrac{5}{6 \: } \times  \bigg(\dfrac{ - 4}{5} +\dfrac{7}{10}  \bigg) =  \bigg(\dfrac{5}{6 \: } \times \dfrac{ - 4}{5} \bigg) +  \bigg(\dfrac{5}{6 \: } \times \dfrac{7}{10}  \bigg)

\sf  \implies  \dfrac{5}{6 \: } \times  \bigg(\dfrac{ - 4 + 7}{10}  \bigg) =   \dfrac{ - 4}{6}  +   \dfrac{7}{12}

\sf  \implies  \dfrac{5}{6 \: } \times \dfrac{ - 1}{10}  =    \dfrac{ - 2 \times 4 + 7}{12}

\sf  \implies  \dfrac{ - 1}{12}  =     \dfrac{ - 1}{12}

\bf Hence  \: verified \:  !

━━━━━━━━━━━━━━━━━━━━━━━━

Solution : 12

\bf \underline{Given }  \sf\implies  \dfrac{5}{8}  \times  \dfrac{ - 6}{20}  \times  \dfrac{11}{18}  \times  \dfrac{ - 4}{33}

\sf\implies  \dfrac{5 \times  - 6 \times 11 \times  - 4}{8 \times 20 \times 18 \times 33}

\sf\implies  \dfrac{1320}{95040}  =  \dfrac{1}{72}

━━━━━━━━━━━━━━━━━━━━━━━━

Solution : 13

\sf   \implies\dfrac{5}{3}  \times x =  \dfrac{ - 5}{11}

\implies \sf    x =  \dfrac{ - 5}{11}   \times \dfrac{3}{5}

\implies \sf    x =   \dfrac{ - 3}{11}

━━━━━━━━━━━━━━━━━━━━━━━━

Solution : 14

\sf \implies \bigg(\dfrac{ - 7}{11} \bigg) \div \bigg( \dfrac{7}{11} \bigg)

\sf \implies \dfrac{ - 7}{11}  \div \dfrac{7}{11}

\sf \implies \dfrac{ - 7}{11}   \times  \dfrac{11}{7}  = 1

━━━━━━━━━━━━━━━━━━━━━━━━

Answered by ThisUsernamesTooLong
33

Continuation of SachinGupta01's answer:

Solution : 15

\sf \: 1^{st} \: Law = \bigg( \dfrac{m}{n} \bigg)^{a} \times \bigg( \dfrac{m}{n} \bigg)^{b} = \bigg( \dfrac{m}{n} \bigg)^{a + b}

\sf 2^{nd} \: Law =

\sf \: Case : (i) \: if \: a > b \: then, \bigg( \dfrac{m}{n}\bigg) ^{a} \div \bigg( \dfrac{m}{n}\bigg)^{b} = \bigg( \dfrac{m}{n}\bigg)^{a - b}

\sf Case : (ii) \: if \: a<b \: then, \bigg( \dfrac{m}{n}\bigg) ^{a} \div \bigg( \dfrac{m}{n}\bigg)^{b} = \dfrac{1}{\bigg( \dfrac{m}{n}\bigg)^{b - a}}

\sf \: 3^{rd} \: Law =  \bigg\{ \bigg( \dfrac{m}{n} \bigg)^{a}   \bigg\}^{b} = \bigg( \dfrac{m}{n} \bigg)^{a \times b} =\bigg( \dfrac{m}{n} \bigg)^{ab}

\sf \: 4^{th} \: Law = \bigg( \dfrac{m}{n} \bigg)^{ - 1} = \bigg( \dfrac{n}{m} \bigg) =\dfrac{n}{m}

\sf \: 5^{th} \: Law = \bigg( \dfrac{m}{n} \bigg)^{0} = 1

Similar questions