Math, asked by VaibhavTripathi6300, 1 month ago

Q1) find the area of a Trapezium ABCD in which AB II DC, AB = 78 cm, CD = 52 cm, AD = 28 cm and BC = 30 cm

And the answer at the back side of the book is given ( Answer ) = 1680 sq cm

I want the whole solution with explaination
plz don't spam​​

Answers

Answered by Anonymous
12

⠀⠀⠀⠀⠀⠀⠀⠀⠀Diagram in the attachment

\huge\bf\underline\mathfrak{Answer :}

  • \text{Area of the Trapezium ABCD} = \sf\purple{1680 \: cm²}

\huge\bf\underline\mathfrak{Step \: by \: step \: explanation :}

\huge\bf\underline\mathfrak{Given :}

  • \sf\text{ABCD is a trapezium.}
  • \sf\text{AB} = \sf\red{78 \: cm}
  • \sf\text{CD} = \sf\red{52 \: cm}
  • \sf\text{AD} = \sf\red{28 \: cm}
  • \sf\text{BC} = \sf\red{30 \: cm}

\huge\bf\underline\mathfrak{To \: find :}

  • \text{Area of the trapezium ABCD.}

\huge\bf\underline\mathfrak{Construction :}

  • \text{Draw CY ⊥ AB, such that CY meets AB at M.}
  • \text{Draw CZ ll DA, such that CZ meets AB at Z.}

\huge\bf\underline\mathfrak{Solution :}

\text{From the construction, it is clear that :-}

  • \text{AZCD is a}\sf\blue{parallelogram.}
  • \text{CMB is a}\sf\blue{triangle,∆ .}

⠀⠀⠀⠀⠀⠀⠀⠀⠀∴ \sf{AD = ZC = 28 \: cm}

⠀⠀⠀⠀\text{(Opposite sides of parallelogram are equal.)}

⠀⠀⠀⠀⠀⠀⠀⠀⠀And, \sf{ZB = AB - ( AZ )}

⠀⠀⠀⠀⠀⠀⠀⇒ \sf{ZB = 78 - 52 = 26 \: cm}

\sf\underbrace{Finding \: the \: area \: of \: ∆CZB :- }

⠀⠀⠀⠀⠀⠀⠀⠀⠀\color{green}\star\:\tt {By \: Heron's \: Formula \: :-}

\text{Sides of ∆CZB :}

  1. \sf{BC} = \sf\mathbb{30 \: cm \: (a)}
  2. \sf{ZB} = \sf\mathbb{26 \: cm  \: (b)} ( From above )
  3. \sf{ZC} = \sf\mathbb{28 \: cm \: (c)}

⠀⠀⠀⠀⠀⠀⠀⠀⠀\sf{Perimetre(∆CZB)} = \sf{ZC + BC + ZB}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀\implies \sf{(30+26+28) \: cm}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀\implies \sf\red{84 \: cm}

Also, \sf{Semi-perimetre(∆CZB)} = \sf \dfrac{Perimeter \: (∆ \: CZB \: ) }{2}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀\implies \sf \dfrac{84}{2}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀\implies \sf\red{42 \: cm}

⠀⠀⠀⠀⠀⠀⠀⠀⠀\color{green}\star\:\tt{Applying \: the \: formula \: :-}

⠀⠀⠀⠀⠀⠀\sf \sqrt{s(s - a)(s - b)(s - c)}

⠀⠀⠀⠀⠀ \sf \sqrt{s(42 - 30)(42 - 26)(42 - 28)}

⠀⠀⠀⠀⠀⠀ \sqrt{42 \times 14 \times 16 \times 12} \: cm^{2}

⠀⠀⠀⠀⠀⠀\implies \sf(14 \times 4 \times 6) \: cm {}^{2}

⠀⠀⠀⠀⠀⠀\implies \sf\red{336 \: cm²}

\sf\underbrace{Finding \: CY \: from \: the \: area \: of \: ∆CZB :- }

\text{Area(∆CZB)} = \sf \dfrac{1}{2}  \times Base \:  \times Height

\implies 336 = \sf \dfrac{1}{2}  \times ZB \:  \times CY

\implies 336 = \sf \dfrac{1}{2}  \times 26 \:  \times CY

\implies CY = \sf \dfrac{336}{13} cm.

\sf\underbrace{Area \: of \: Trapezium \: ∆ABCD :- }

\text{Area(Trapezium ABCD)} = \sf\dfrac{1}{2}  \:  \times (AB \:  + DC \: ) \times CY

\implies \sf \dfrac{1}{2}  \times (78  + 52) \times  \frac{336}{13}  \: cm ^{2}

\implies \mathfrak{1680 \: cm²}

\text{Hence, area of trapezium ABCD} = \sf\purple{1680 \: cm².}

Attachments:
Answered by itzroyaljatti
3

Answer:

In physics, a force is any interaction that, when unopposed, will change the motion of an object. A force can cause an object with mass to change its velocity, i.e., to accelerate. Force can also be described intuitively as a push or a pull. A force has both magnitude and direction, making it a vector quantity.

Myself Harsimran Kaur

Class 8th

From Punjab

Sorry,can't tell my age to anyone

Similar questions