Math, asked by mizzzcutiepie, 1 month ago

Q1.find the domain of the real valued function f(x)=1/log(2-x)​.

Answers

Answered by PRINCE100001
5

Step-by-step explanation:

We have to find domain of the given function :-

\rm \large f(x) = \dfrac{1}{log (2-x)}

We know that denominator cannot be zero.

\begin{gathered} \rm \longrightarrow log (2-x) \ne0 \\ \\ \rm \longrightarrow (2-x) \ne {e}^{0} \\ \\ \rm \longrightarrow 2-x \ne 1\\ \\ \rm \longrightarrow 2 - 1 \ne x\\ \\ \rm \longrightarrow 1 \ne x\\ \\ \rm \longrightarrow x \ne 1 \: \: \: \: ...(1)\end{gathered}

Also,

\begin{gathered} \large \rm \longrightarrow 2 - x &gt; 0 \\ \\ \large \rm \longrightarrow 2 &gt; x \: \: ...(2)\end{gathered} </p><p>

From equation (1) and (2) :-

\begin{gathered} \rm D_f = x \in (- \infty, 2) - \{1 \} \\ or \\ \rm D_f = x \in (- \infty, 1) \cup (1,2) \\ \\ \rm \: where \: D_f \: is \: domain \: of \: the \: function\end{gathered} </p><p>

Similar questions