Q1.find the value of cos^2 90°+sin30°+tan45°
Answers
Explanation:
cos90°= 0
sin30°=1/2
tan45°= 1
Now, put the values into Question
=> cos²90°+ sin30°+ tan45°
=> 0 + 1/2+1
=> 1/2+1= 1+2/2
= 3/2
More trigonometric values :
\begin{gathered} \Large{ \begin{tabular}{|c|c|c|c|c|c|} \cline{1-6} \theta & \sf 0^{\circ} & \sf 30^{\circ} & \sf 45^{\circ} & \sf 60^{\circ} & \sf 90^{\circ} \\ \cline{1-6} $ \sin $ & 0 & $\dfrac{1}{2 }$ & $\dfrac{1}{ \sqrt{2} }$ & $\dfrac{ \sqrt{3}}{2}$ & 1 \\ \cline{1-6} $ \cos $ & 1 & $ \dfrac{ \sqrt{ 3 }}{2} } $ & $ \dfrac{1}{ \sqrt{2} } $ & $ \dfrac{ 1 }{ 2 } $ & 0 \\ \cline{1-6} $ \tan $ & 0 & $ \dfrac{1}{ \sqrt{3} } $ & 1 & $ \sqrt{3} $ & $ \infty $ \\ \cline{1-6} \cot & $ \infty $ &$ \sqrt{3} $ & 1 & $ \dfrac{1}{ \sqrt{3} } $ &0 \\ \cline{1 - 6} \sec & 1 & $ \dfrac{2}{ \sqrt{3}} $ & $ \sqrt{2} $ & 2 & $ \infty $ \\ \cline{1-6} \csc & $ \infty $ & 2 & $ \sqrt{2 } $ & $ \dfrac{ 2 }{ \sqrt{ 3 } } $ & 1 \\ \cline{1 - 6}\end{tabular}}\end{gathered}
Note : Check from web as not visible on this app
More trigonometric identities
- sin²Θ+cos²Θ=1
- sec²Θ=1+tan²Θ
- cosec²Θ=1+cot²Θ
Reciprocal identities
- Sinθ= 1/cosecθ
- cosθ=1/secθ
- tanθ=1/cotθ
Angle formulas
- sin(90°−θ) = cos θ
- cos(90°−θ) = sin θ
- tan(90°−θ) = cot θ
- cot(90°−θ) = tan θ
- sec(90°−θ) = cosec θ
- cosec(90°−θ) = sec θ