Math, asked by ishaansingh53, 1 year ago

Q1. Find the zeroes of the quadratic polynomials and verify the relationship between the zeroes and<br />coefficient of the polynomial.<br />(CBSE 2008)<br />1. 2x - 11x +15<br />2. 45 – 45+1<br />3.6x² - 3<br />4. 41° +8u<br />5. 43x + 5x-23<br />6. x-(13 + 1)x +13<br />7. 38-8-4<br />8. EL<br />Q2. Find the quadratic polynomial each with the given numbers as the sum and product of its zeroes<br />respectively<br />1.0.15<br />il<br />2. 12. 2+52<br />7​

Answers

Answered by tylerrjosephh2138
1

a) f(x) = x3 − 5x2 + 2x + 12

Since this is a 3rd degree polynomial, we expect 3 roots.

 

The possible rational roots are ±(factors of the constant... 12)/(factors of leading coefficient... 1)

Possible rational roots:  ±(factors of 12)/(factors of 1)

 

±{1, 2, 3, 4, 6, 12}/1

 

Using synthetic division find look for a root:

If x = 1 is a zero then (x-1) is a root

 

1 |   1    -5    2    12

  |          1  -4    -2

  -------------------------

      1    -4   -2  | 10    Since remainder isn't zero, not a root

                       ------

 

If x=3 is a zero, then (x-3) is a root

 

3 |  1    -5    2    12

  |        3   -6    -12

  -------------------------

    1    -2    -4   | 0     Since remainder is zero, this is a root

                        ----

 

x3 − 5x2 + 2x + 12 = (x-3)(x2 - 2x - 4)

 

Now we need to solve or factor x2-2x -4

This isn't factorable.  We can continue synthetic division

or use quadratic equation.

 

x = [2 ±√((-2)2-4(1)(-4))]/2 =

 = (2 ±√20)/2

 = (2 ±2√5)/2

 = 1±√5

 

We now have 3 roots:

x = {3, 1+√5, 1 - √5}

 

f(x) = (x-3)(x - (1+√5))(x-(1-√5))

 

     = (x-3)(x - 1 - √5)(x - 1 + √5)

 

b) g(x) = 4x3 − 6x2 + 1

 

  Again we would expect 3 roots since highest exponent is 3.

  Possible rational roots: ±1/{1, 2, 4} = ±(1, 1/2, 1/4)

 

Again.. Look for a root using synthetic division.

After finding the first root you can use quadratic on the rest or,

if possible, factor it.

Similar questions