Math, asked by llitzsanull, 1 month ago

Q1.Good Question ?
____________

Differentiate
e {}^{ \sqrt{3x} }e
3x



with respect to x. ​

Answers

Answered by PRINCE100001
23

Step-by-step explanation:

Answer:

This differentiation is done by the method of Chain Differentiation.

First we differentiate the exponential (e) function. Later we differentiate the power with root alone. Finally we differentiate the term inside the root.

To obtain the final derivative, all the three answers (derivatives of each function) are multiplied.

Derivatives of some important functions:

\begin{gathered}\dfrac{d}{dx} (e^x) = e^x\\\\\\\dfrac{d}{dx} (\sqrt{x}) = \dfrac{1}{2\sqrt{x}}\\\\\\\dfrac{d}{dx} (cx) = c \:\:\: \text{('c' is a constant)}\end{gathered} </p><p>

Differentiating the given question we get:

\begin{gathered}\dfrac{d}{dx} (e^{\sqrt{3x}}) = e^{\sqrt{3x}} \times \dfrac{1}{2\sqrt{3x}} \times 3\\\\\\\boxed{ \bf{ \dfrac{d}{dx} (e^{\sqrt{3x}}) = \dfrac{3e^{\sqrt{3x}}}{2\sqrt{3x}}}}\end{gathered} </p><p>

Answered by SukhmaniDhiman
1

Answer:

This is your answer hope it's help u

Attachments:
Similar questions