Q1.Hi !
if three distinct numbers a, b and c are in GP and the equation ax² + 2bx + c = 0 and dx² + 2ex + f = 0 have a common root , then which on of the following statements is correct .
Answers
Step-by-step explanation:
a,b,c are in G.P
Therefore, b² = ac
➝ b = √(ac)
Now, We will put b = √(ac) in the given equation ax²+2bx+c = 0.
➝ ax²+2√(ac) x+c = 0
➝ (√a x)²+2.√a.√c x+ (√c)² = 0
➝ (√a x)²+2√(ac) x+ (√c)² = 0
➝ (√a x + √c)² = 0
➝ √a x + √c = 0
➝ x = -(√c ) / (√a)
Therefore, root of the equation ax²+2√(ac) x+c = 0 = -(√c ) / (√a)
Now, the equations ax² + 2bx + c = 0 and dx² + 2ex + f = 0 have a common root.
Put x = -(√c ) / (√a) in the equation dx² + 2ex + f = 0.
Therefore,
Therefore,d/a , e/b and f/c are in A.P
Step-by-step explanation:
Step-by-step explanation:
a,b,c are in G.P
Therefore, b² = ac
➝ b = √(ac)
Now, We will put b = √(ac) in the given equation ax²+2bx+c = 0.
➝ ax²+2√(ac) x+c = 0
➝ (√a x)²+2.√a.√c x+ (√c)² = 0
➝ (√a x)²+2√(ac) x+ (√c)² = 0
➝ (√a x + √c)² = 0
➝ √a x + √c = 0
➝ x = -(√c ) / (√a)
Therefore, root of the equation ax²+2√(ac) x+c = 0 = -(√c ) / (√a)
Now, the equations ax² + 2bx + c = 0 and dx² + 2ex + f = 0 have a common root.
Put x = -(√c ) / (√a) in the equation dx² + 2ex + f = 0.
\begin{gathered}\begin{gathered} \tt \rightarrow d { \bigg( \dfrac{ - \sqrt{c} }{\sqrt{a}} \bigg) }^{2} - 2e\dfrac{ \sqrt{c} }{\sqrt{a}} + f = 0 \\ \\ \tt \rightarrow d { \bigg( \dfrac{{c} }{a} \bigg) }^{} - 2e\dfrac{ \sqrt{c} }{\sqrt{a}} + f = 0\\ \\ \tt \rightarrow d { \bigg( \dfrac{{c} }{a} \bigg) }^{} - 2e\dfrac{ \sqrt{c} \times \sqrt{c} }{\sqrt{a}\times \sqrt{c}} + f = 0\\ \\ \tt \rightarrow d { \bigg( \dfrac{{c} }{a} \bigg) }^{} - 2e\dfrac{ {c} }{\sqrt{ac} } + f = 0\\ \\ \tt \rightarrow{ \dfrac{{dc} }{a} }^{} - 2\dfrac{ {ec} }{b} + f = 0\\ \\ \tt \rightarrow{ \dfrac{{dc} }{ac} }^{} - \dfrac{ {2ec} }{bc} + \dfrac{f}{c} = 0\\ \\ \tt \rightarrow{ \dfrac{{d} }{a} }^{} - \dfrac{ {2e} }{b} + \dfrac{f}{c} = 0\\ \\ \tt \rightarrow - \dfrac{ {2e} }{b} = - { \dfrac{{d} }{a} } - \dfrac{f}{c} \\ \\ \tt \rightarrow \dfrac{ {2e} }{b} = { \dfrac{{d} }{a} } + \dfrac{f}{c} \end{gathered} \end{gathered}
→d(
a
−
c
)
2
−2e
a
c
+f=0
→d(
a
c
)
−2e
a
c
+f=0
→d(
a
c
)
−2e
a
×
c
c
×
c
+f=0
→d(
a
c
)
−2e
ac
c
+f=0
→
a
dc
−2
b
ec
+f=0
→
ac
dc
−
bc
2ec
+
c
f
=0
→
a
d
−
b
2e
+
c
f
=0
→−
b
2e
=−
a
d
−
c
f
→
b
2e
=
a
d
+
c
f
Therefore,
Therefore,d/a , e/b and f/c are in A.P