Math, asked by AnilVasyani, 2 months ago

Q1. If a/b = c/d , show that:
• a³c + ac³ / b³+bd³ = (a+c)⁴/(b+d)⁴​

Answers

Answered by SƬᏗᏒᏇᏗƦƦᎥᎧƦ
227

\Large{\bold{\underline{\underline \mathfrak{Appropriate\: question:-}}}}

. If a/b = c/d , show that:

• a³c + ac³ / b³d+bd³ = (a+c)⁴/(b+d)⁴

\Large{\bold{\underline{\underline \mathfrak{given \: information:-}}}}

  •  \bf{} \dfrac{a}{b}  =  \dfrac{c}{d}

\Large{\bold{\underline{\underline \mathfrak{Need \: to \: find?}}}}

  • We have to show that both the sides R.H.S. and L.H.S. are equal.

\Large{\bold{\underline{\underline \mathfrak{Step \:  by  \: step  \: explaination:-}}}}

  • Let us put the given ratios equal to k
  • Then obtain anticident of every ratio in terms of k.
  • After that substitute the values in the terms of k with that after doing simplify it.

Let's solve it.

  • \hookrightarrow \:  \bf{ \dfrac{a {}^{3}  + ac {}^{3} }{b {}^{3} d \:  +  \: bd {}^{3}  }  =  \dfrac{(a + c) {}^{4} }{(b + d) {}^{4} } }

Calculation for L.H.S. (Left hand side)

We know that a/b = c/d as c/d is equal to k thus a/b would also be k.

  • By cross multiplying calculating value of a and c.
  • \text{a = bk \: and \: c = dk}

Substituting values.

  •  \hookrightarrow \:  \bf{ \dfrac{bk {}^{3}  \times dk + bk \times dk {}^{3} }{b {}^{3}d + bd {}^{3}  } }

Solving.

  •  \hookrightarrow \:  \bf{ \dfrac{b {}^{3} d {}^{4} k {}^{4} \:  +  \: bd {}^{3} k {}^{4}  }{b {}^{3}d \:  +  \: bd {}^{3}  } }

  • \hookrightarrow \:  \bf{ \dfrac{k {}^{4} (b {}^{3} d \:  + \:  bd {}^{3} )}{(b {}^{3}d + bd {}^{3} ) } }

Cancelling them.

  • \hookrightarrow \:  \bf{ \dfrac{k {}^{4}  \: (\cancel{b {}^{3} d \:  + \:  bd {}^{3} })}{( \cancel{b {}^{3}d + bd {}^{3} )} } }

Now,

  • \hookrightarrow \:   \boxed{ \underline{\bf{k {}^{4}} }}

__________

Further answer is being created and will be created soon Thanks!! :)

Answered by BrainlyProgrammer007
50

\boxed{\boxed{\huge{\blue{\bold{\underline{Answer}}}}}}

Let \:   \frac{a}{b}  =  \frac{c}{d}  = k</p><p> \\  \\  =  &gt; a = bk \: and \: c = dk

L..H.S =  \frac{a {}^{3}c  \: +  \: ac {}^{3}  }{b {}^{3}d  \: +  \: bd {}^{3}  }

=  \frac{ac(a {}^{2}  \: +  \: c {}^{2})  }{bd(b { }^{2} \:   +  \: d {}^{2} )}

=   \frac{(bk \:  \times  \: dk)(b {}^{2} k {}^{2} \:  +   \: d {}^{2}k {}^{2}   }{bd(b {}^{2}  \:  +  \: d {}^{2} )}

=  \frac{k {}^{2}  \:  \times  \: k {}^{2} (b {}^{2}  \:  +  \: d {}^{2} ) }{b {}^{2}  \:  +  \: d {}^{2} }

 = k {}^{4}

R.H.S =  \frac{(a \:  +  \: c) {}^{4} }{(b \:  +  \: d) {}^{4} }  =  \frac{(bk \:  +  \: dk) {}^{4} }{(b \:  +  \: d) {}^{4} }   \\  \\  \: = [ \frac{k(b \:  +  \: d)}{b \:  +  \: d} ] {}^{4}  = k {}^{4}

Hence,  =  \frac{a {}^{3} c  \: +  \: ac {}^{3} } {b {}^{3}d \:  +  \: bd {}^{3}  }  =  \frac{(a \:  +  \: c)  {}^{4}  }{(b \:  +  \: d) {}^{4} }

Similar questions