Q1) If asin2(x)+bcos2(y)=c , bsin2(y)+acos2(y)=d and
atan(x)=btan(y)
Then prove that : a2/b2=(d−a)(c−a)/(b−c)(b−d
Answers
Answered by
2
asin
2
x+bcos
2
x=c⇒asin
2
x+b(1−sinx)=c
⇒asin
2
x+b−bsin
2
x=c⇒(a−b)sin
2
x=c−b
⇒sin
2
x=
a−b
c−b
asin
2
x+bcos
2
x=c⇒a(1−cos
2
x)+bcos
2
x=c
⇒a−acos
2
x+bcos
2
x=c⇒(b−a)cos
2
x=c−a
⇒cos
2
x=
a−b
c−b
∴tan
2
x=
a−c
c−b
bsin
2
y+acos
2
y=d⇒bsin
2
y+a(1−sin
2
y)=d
⇒bsin
2
y+a−asin
2
y=d⇒(b−a)sin
2
y=d−a
⇒sin
2
y=
b−a
d−a
bsin
2
y+acos
2
y=d⇒b(1−cos
2
y)+acos
2
y=d
⇒b−bcos
2
y+acos
2
y=d⇒(a−d)cos
2
y=d−b
⇒cos
2
y=
a−b
d−b
∴tan
2
y=
a−d
d−b
atanx=btany⇒
tany
tanx
=
a
b
⇒
tan
2
y
tan
2
x
=
a
2
b
2
⇒
b
2
a
2
=
(b−c)(b−d)
(d−a)(c−a)
Similar questions