Math, asked by MathsEuclid, 1 month ago

Q1.If cos(θ-α), cosθ, cos(θ+α) are in H. P, then prove that cos^2θ = 1 + cosα .

Answers

Answered by PRINCE100001
5

Step-by-step explanation:

Given,

cos(θ-α) , cosθ , cos(θ+α) are in H.P.

⇒1/cos(θ-α) , 1/cosθ , 1/cos(θ+α) are in A.P.

If the above series is in A.P. then

\begin{gathered}\frac{1}{\cos\theta}=\frac{\frac{1}{\cos(\theta-\alpha)}+\frac{1}{\cos(\theta+\alpha)}}{2}\\\;\\\frac{2}{\cos\theta}=\frac{1}{\cos(\theta-\alpha)}+\frac{1}{\cos(\theta+\alpha)}\\\;\\\frac{2}{\cos\theta}=\frac{\cos(\theta+\alpha)+\cos(\theta-\alpha)}{\cos(\theta-\alpha).\cos(\theta+\alpha)}\\\;\\\frac{2}{\cos\theta}=\frac{\cos\theta\cos\alpha-\sin\theta\sin\alpha+\cos\theta\cos\alpha+\sin\theta\sin\alpha}{cos^2\theta-sin^2\alpha}\end{gathered}

\begin{gathered}\frac{2}{\cos\theta}=\frac{2\cos\theta\cos\alpha}{\cos^2\theta-\sin^2\alpha}\\\;\\\frac{1}{\cos\theta}=\frac{\cos\theta\cos\alpha}{cos^2\theta-\sin^2\alpha}\\\;\\\cos^2\theta-\sin^2\alpha=\cos^2\theta\cos\alpha\\\;\\\sin^2\alpha=\cos^2\theta-\cos^2\theta\cos\alpha\\\;\\\sin^2\alpha=\cos^2\theta(1-\cos\alpha)\\\;\\\frac{\sin^2\alpha}{1-\cos\alpha}=\cos^2\theta\\\;\\\cos^2\theta=\frac{\sin^2\alpha(1+\cos\alpha)}{(1-\cos\alpha)(1+\cos\alpha)}\\\;\\\cos^2\theta=\frac{\sin^2\alpha(1+\cos\alpha)}{1-\cos^2\alpha}\end{gathered}

\begin{gathered}\cos^2\theta=\frac{\sin^2\alpha(1+\cos\alpha)}{\sin^2\alpha}\\\;\\\cos^2\theta=1+\cos\alpha\end{gathered}

Hence Proved.

Note:-

1) If a , b , c are in H.P ; then 1/a , 1/b and 1/c will be in A.P.

2) If a,b,c are in AP, then b = (a+c)/2

3) cos(a+b)cos(a-b) = cos²a - sin²b

4) 1 - cos²θ = sin²θ

5) cos(A+B) = cosAcosB - sinAsinB

6) cos(A-B) = cosAcosB + sinAsinB

Answered by XxBRANDEDGIRLxX
1

Answer:

agar vo mujhse pyaar karta to mujhe atmagyan pe reply karta

.

.

Seoul, officially the Seoul Special Metropolitan City, is the capital and largest metropolis of the Republic of Korea (commonly known as South Korea). Seoul is the world's 16th largest city, and forms the heart of the Seoul Capital Area, which includes the surrounding Incheon metropolis and Gyeonggi province.

Similar questions