Q1.If cos(θ-α), cosθ, cos(θ+α) are in H. P, then prove that cos^2θ = 1 + cosα .
Answers
Step-by-step explanation:
Given,
cos(θ-α) , cosθ , cos(θ+α) are in H.P.
⇒1/cos(θ-α) , 1/cosθ , 1/cos(θ+α) are in A.P.
If the above series is in A.P. then
Hence Proved.
Note:-
1) If a , b , c are in H.P ; then 1/a , 1/b and 1/c will be in A.P.
2) If a,b,c are in AP, then b = (a+c)/2
3) cos(a+b)cos(a-b) = cos²a - sin²b
4) 1 - cos²θ = sin²θ
5) cos(A+B) = cosAcosB - sinAsinB
6) cos(A-B) = cosAcosB + sinAsinB
Step-by-step explanation:
Given :-
cos(θ-α), cosθ, cos(θ+α) are in H. P
To find :-
Prove that cos²θ = 1 + cosα .
Solution :-
Given that
cos(θ-α), cosθ, cos(θ+α) are in H. P
We know that
If a, b,c are in the A.P. then 1/a, 1/b ,1/c are in the H.P.
=> 1/[cos(θ-α)] ,1/cosθ,1/[ cos(θ+α) ] are in A. P.
We know that
If a,b,c are in the A.P then 2b = a+c
We have ,
a = 1/[cos(θ-α)]
b = 1/cosθ
c = 1/[ cos(θ+α) ]
Now,
2b = a+c
=> 2(1/cosθ) = 1/[cos(θ-α)] + 1/[ cos(θ+α) ]
=>2/cosθ=[cos(θ+α)+cos(θ-α)]/[cos(θ-α)cos(θ+α)]
We know that
Cos(A+B) = Cos A Cos B - Sin A Sin B
cos(θ+α) = Cos θ Cos α - Sin θ Sin α
and
Cos (A-B) = Cos A Cos B + Sin A Sin B
cos(θ-α) = Cos θ Cos α + Sin θ Sin α
Now,
cos(θ+α)+cos(θ-α)
=> CosθCosα-SinθSinα+CosθCosα+SinθSinα
=> CosθCosα + CosθCosα
=> 2CosθCosα
and
cos(θ+α)cos(θ-α)
=> (CosθCosα-SinθSinα)(CosθCosα+SinθSinα)
=> (CosθCosα)²-(SinθSinα)²
=> Cos²θCos²α-Sin²θSin²α
=> Cos² θ(1-sin²α)-(1-cos²θ)Sin²α
=> Cos² θ- cos² θsin²α+cos²θ-Sin²α
=> Cos² θ-Sin²α
Now,
2/cosθ=[cos(θ+α)+cos(θ-α)]/[cos(θ-α)cos(θ+α)]
=>2/Cos θ =2CosθCosα/(Cos² θ-Sin²α)
=> 1/Cos θ =CosθCosα/(Cos² θ-Sin²α)
On applying cross multiplication then
=> Cos² θ-Sin²α = CosθCosα Cos θ
=> Cos² θ-Sin²α = Cos²θCosα
=> Cos² θ= Sin²α + Cos²θCosα
=> Cos² θ-Cos²θCosα= Sin²α
=> Cos² θ(1-Cosα) = Sin²α
=> Cos² θ= Sin²α /(1-Cosα)
On multiplying both numerator and denominator with (1+Cosα) then
=> Cos² θ= Sin²α( 1+Cosα)/(1-Cosα) (1+Cosα)
=> Cos² θ= Sin²α( 1+Cosα)/(1²-Cos²α)
Since (a+b)(a-b) = a²-b²
=> Cos² θ= Sin²α( 1+Cosα)/(1-Cos²α)
=> Cos² θ= Sin²α( 1+Cosα)/(Sin²α)
On cancelling Sin²α in RHS
=> Cos² θ= 1+Cosα
Hence, Proved.
Used formulae:-
→ (a+b)(a-b) = a²-b²
→ Sin² A + Cos² A = 1
→ Cos(A+B) = Cos A Cos B - Sin A Sin B
→ Cos (A-B) = Cos A Cos B + Sin A Sin B
→ If a, b,c are in the A.P. then 1/a, 1/b ,1/c are in the H.P.
→ If a,b,c are in the A.P then 2b = a+c