Math, asked by screwroaster, 9 months ago

Q1.If sinθ + cosecθ = 3,then find the value of sin4 θ +1 sin2 θ [Ans:- 7] Q2 .If tanθ = pq ,show that p sinθ – q cosθ p2- q2 p sinθ + q cosθ p2+ q2 Q3 If a cos θ – b sin θ=x and a sin θ+b cos θ = y prove that a2+b2 = x2+y2 Q4.If sin θ and sec θ, ( 00 < θ < 900) are the roots of the equation √3x2+kx+3=0,then find the value of k [Ans:- k=- 3+4√3 2 ] Q5. Show that geometrically that sin 600 =√32 Q6. A rhombus of side 20cm has two angles of 600 each.Find the length of the diagonals. Q7.Prove that sec6θ =tan6θ +3tan2θsec2θ+1 Q8. If xa cos θ+ ybsinθ=1 and xa sin θ- ybcosθ=1 prove that x2 y2 2 a2 b2

Answers

Answered by ankurankur17978
3

ANSWER

8.x2+αy2+2βy=a2   represent pair of perpendicular straight lines

Coeff. of x2+Coeff. of y2=0

1+α=0

α=−1

and Discriminant=D=abc+2fgh−af2−bg2−ch2=0

=−αa2−β2=0

αa2+β2=0

and  α=−1,β2=a2

α−1   and   β=a   or   β=

7.According to problem,

sec6θ=(sec2θ)3=(1+tan2θ)3=(1)3+(tan2θ)3+3×1×tan2θ(1+tan2θ)=1+tan6θ+3tan2θsec2θ

Hence proved

6.Let ABCD be a rhombus of side 10cm and ∠BAD=∠BCD=60o. Diagonals of parallelogram bisect each other.

So, AO=OC and BO=OD

In right triangle AOB

sin30o=ABOB

⇒ 21=10OB

⇒ OB=5cm

∴ BD=2(OB)

⇒ BD=2(5)

⇒ BD=10cm

cos30o=ABOA

⇒ 23=10OA

⇒ OA=53

∴ AC=2(OA)

⇒ AC=2(53)

⇒ AC=103cm

So, the length of diagonals AC=103cmand BD=

5.∫1+sin2x1−sin2xdx

=∫sin2x+cos2x+2sinxcosxsin2x+cos2x−2sinxcosxdx

=∫(sinx+cosx)2(sinx−cosx)2dx

=∫sinx+cosxsinx−cosxdx

Let t=sinx+cosx⇒dt=(cosx−sinx)dx=−(sinx−cosx)dx

=−∫tdt

=−log∣t∣+c

=−log∣sinx+cosx∣+c where t=sinx+cosx

4.⇒  The given quadratic equation is 2x2+kx+4=0, comparing it with ax2+bx+c=0

⇒  We get, a=2,b=k,c=−4

⇒  It is given that roots are real.

∴   b2−4ac≥0

⇒  (k)2−4(2)(4)≥0

⇒  k2−32≥0

⇒  (k+42)(k−42)≥0

⇒  k≤−42 or k≥42

3.

We have: cos2θaxsinθ−sin2θbycosθ=0

⇒axsin3θ−bycos3θ=0

⇒bysin3θ=axcos3θ

⇒(bysin3θ)2/3=(axcos3θ)2/3

⇒(by)2/3sin2θ=(ax)2/3cos2θ

⇒(by)2/3sin2θ−(ax)2/3cos2θ−(by)2/3

2.answr

LOGIN

JOIN NOW

What would you like to ask?

MATHS

Asked on December 20, 2019 byAnshuli Bhadwa

If qcosΘ=q2−p2, prove that q sin Θ=p.

Share

Save

ANSWER

Given:- qcosθ=q2−p2

To prove:- qsinθ=p

Proof:-

qcosθ=q2−p2(Given)

⇒cosθ=qq2−p2.....(1)

As we know that,

cosθ=HypotenuseBase.....(2)

On comparing eqn(1)&(2), we have

Base=q2−p2

Hypotenuse=q

Now applying pythagoras theorem,

Hypotenuse2=Base2

1.cscθ−sinθ=a3

sinθ1−sinθ=a3

sinθ1−sin2θ=a3

a3=sinθcos2θ=cotθcosθ ....... (i)

Also, secθ−cosθ=b3

cosθ1−cosθ=b3

b3=cosθ1−cos2θ=cosθsin2θ

b3=tanθsinθ ....... (ii)

Consider,

a2b2(a2+b2)=[cotθcosθtanθsinθ]2/3[a2+b2]

=[sin

Explanation:

plz mark a brainlist

Similar questions