Math, asked by chehak141587, 8 months ago

Q1 If the lengths of the sides of a
triangle are in the ratio 3: 4:5 and its
perimeter is 48 cm. find its area. *​

Answers

Answered by azamsaif912
4

Answer:

Semiperimeter = 48/2 = 24 CM. = 96 cm². Let the sides be 3x , 5x , 7x . Therefore, the sides are 60 ,100 , 140m

Answered by sethrollins13
24

Given :

  • Sides of Triangle are in the ratio 3:4:5

To Find :

  • Area of Triangle.

Solution :

  • a = 3x
  • b = 4x
  • c = 5x

\longmapsto\tt{3x+4x+5x=48}

\longmapsto\tt{12x=48}

\longmapsto\tt{x=\cancel\dfrac{48}{12}}

\longmapsto\tt\bf{x=4}

Value of x is 4..

Therefore :

\longmapsto\tt{First\:Side(a)=3(4)=12cm}

\longmapsto\tt{Second\:Side(b)=4(4)=16cm}

\longmapsto\tt{Third\:Side(c)=5(4)=20cm}

Now ,

\longmapsto\tt{s=\dfrac{a+b+c}{2}}

\longmapsto\tt{s=\dfrac{12+16+20}{2}}

\longmapsto\tt{s=\cancel\dfrac{48}{2}}

\longmapsto\tt\bf{s=24cm}

\longmapsto\tt{Area=\sqrt{s(s-a)(s-b)(s-c)}}

\longmapsto\tt{\sqrt{24(24-12))(24-16)(24-20)}}

\longmapsto\tt{\sqrt{24(12)(8)(4)}}

\longmapsto\tt\sqrt{{2\times{2}\times{3}\times{2}\times{2}\times{2}\times{3}\times{2}\times{2}\times{2}\times{2}\times{2}}}

\longmapsto\tt{2\times{2}\times{2}\times{2}\times{2}\times{3}}

\longmapsto\tt\bf{96{cm}^{2}}

So , The Area of Triangle is 96cm²..

Similar questions