Math, asked by ItzteraJannu, 1 month ago

Q1.if u = x/2 , then find derivative ( 2sinx - sin2x) / (2sinx + sin2x).

Answers

Answered by khushisingh1591997
0

Step-by-step explanation:

Maybe this can help you a little bit

Attachments:
Answered by PRINCE100001
9

Step-by-step explanation:

Solution :

\begin{gathered}\sf{First\:let\:us\:solve\:the\:identity\::\:\dfrac{2sin(x) - sin2(x)}{2sin(x) + sin2(x)}} \\ \\ \end{gathered} </p><p>

\begin{gathered}:\implies \sf{\dfrac{2sin(x) - sin2(x)}{2sin(x) + sin2(x)}} \\ \\ \end{gathered} </p><p>

</p><p>\begin{gathered}:\implies \sf{\dfrac{2sin(x) - 2sin(x)cos(x)}{2sin(x) + 2sin(x)cos(x)}} \:\:\:[\because \sf{sin2\theta = 2sin(\theta)cos(\theta)}] \\ \\ \\ \end{gathered} </p><p>

\begin{gathered}:\implies \sf{\dfrac{2sin(x)[1 - cos(x)]}{2sin(x)[1 + cos(x)]}} \\ \\ \\ \end{gathered} </p><p>

\begin{gathered}:\implies \sf{\dfrac{1 - cos(x)}{1 + cos(x)}} \\ \\ \\ \end{gathered} </p><p>

\begin{gathered}\textsf{Now, by using the identity of cos(x)\:} \\ \textsf{and substituting them in the equation, we get :} \\ \\ \bullet\:\sf{cos(x) = 2cos^{2}\bigg(\dfrac{x}{2} - 1\bigg)} \\ \\ \bullet\:\sf{cos(x) = 1 - 2sin^{2}\bigg(\dfrac{x}{2}\bigg)} \\ \\ \end{gathered} </p><p>

\begin{gathered}:\implies \sf{\dfrac{1 - 1 - 2sin^{2}\bigg(\dfrac{x}{2}\bigg)}{1 + 2cos^{2}\bigg(\dfrac{x}{2}\bigg) - 1}} \\ \\ \\ \end{gathered} </p><p>

\begin{gathered}:\implies \sf{\dfrac{2sin^{2}\bigg(\dfrac{x}{2}\bigg)}{2cos^{2}\bigg(\dfrac{x}{2}\bigg)}} \\ \\ \\ \end{gathered} </p><p>

\begin{gathered}\textsf{Now, by using the identity of cos(x)\:} \\ \textsf{and substituting them in the equation, we get :} \\ \mapsto \sf{\dfrac{sin(x)}{cos(x)} = tan(x)} \\ \\ \end{gathered} </p><p>

\begin{gathered}:\implies \sf{tan^{2}\bigg(\dfrac{x}{2}\bigg)} \\ \\ \\ \end{gathered} </p><p>

\boxed{\therefore \sf{\dfrac{2sin(x) - sin2(x)}{2sin(x) + sin2(x)} = tan^{2}\bigg(\dfrac{x}{2}\bigg)}} </p><p>

\begin{gathered}\textsf{We know that the value of\:}\sf{u\:is\: \dfrac{x}{2}}\:\textsf{So by substituting it in the equation, we get :} \\ \\ \end{gathered} </p><p>

⠀⠀⠀⠀⠀⠀⠀⠀

⠀\begin{gathered}:\implies \sf{tan^{2}\bigg(\dfrac{x}{2}\bigg)} \\ \\ \\ \end{gathered} </p><p>

⠀⠀⠀⠀⠀⠀⠀⠀⠀

\begin{gathered}:\implies \sf{tan^{2}\bigg(\dfrac{x}{2}\bigg) = tan^{2}(u)} \\ \\ \\ \end{gathered} </p><p>

⠀⠀⠀⠀⠀⠀⠀⠀

⠀\begin{gathered}\boxed{\therefore \sf{tan^{2}\bigg(\dfrac{x}{2}\bigg) = tan^{2}(u)}} \\ \\ \\ \end{gathered} </p><p>

Now, by differentiating the function with respect to u, we get :-

\begin{gathered}:\implies \sf{\dfrac{dy}{du} = \dfrac{d[tan^{2}u]}{du}} \\ \\ \end{gathered} </p><p>

\begin{gathered}\textsf{Now, by applying the chain rule of differentiation, we get :-} \\ \\ \sf{\dfrac{dy}{dx} = \dfrac{dy}{du}\cdot\dfrac{du}{dx}} \\ \\ \end{gathered} </p><p>

\begin{gathered}:\implies \sf{\dfrac{dy}{du} = \dfrac{d[tan^{2}(u)}{d[tan(u)]}\cdot\dfrac{d[tan(u)]}{du}} \\ \\ \end{gathered} </p><p>

\begin{gathered}:\implies \sf{\dfrac{dy}{du} = 2tan(u)\cdot sec^{2}(u)} \\ \\ \end{gathered} </p><p>

\begin{gathered}:\implies \sf{\dfrac{dy}{du} = 2tan(u)sec^{2}(u)} \\ \\ \end{gathered} </p><p>

\begin{gathered}\boxed{\therefore \sf{\dfrac{dy}{du} = 2tan(u)(sec^{2}(u)}} \\ \\ \end{gathered} </p><p>

Similar questions