Math, asked by JAANU10001, 1 month ago

Q1.if y=(x power 2+1) (2x-1) find dy/ dx.

Answers

Answered by PRINCE100001
16

Step-by-step explanation:

We have to differentiate the following expression :-

\rm y = ({x}^{2} + 1)(2x - 1)

\rm \longrightarrow \dfrac{dy}{dx} = \dfrac{d \bigg(({x}^{2} + 1)(2x - 1)\bigg)}{dx}</p><p>

\rm \longrightarrow \dfrac{dy}{dx} = (2x - 1) \dfrac{d \bigg({x}^{2} + 1\bigg)}{dx} + ({x}^{2} + 1) \dfrac{d \bigg(2x - 1\bigg)}{dx}</p><p>

\rm \longrightarrow \dfrac{dy}{dx} = (2x - 1) (2x) + ({x}^{2} + 1) 2</p><p>

\rm \longrightarrow \dfrac{dy}{dx} = 4 {x}^{2} - 2x + 2{x}^{2} +2

\rm \longrightarrow \dfrac{dy}{dx} = 6{x}^{2} - 2x +2</p><p>

Answer :-

\rm \dfrac{dy}{dx} = 6{x}^{2} - 2x +2 </p><p>

Additional Information :-

d(e^x)/dx = e^x

d(x^n)/dx = n x^(n-1)

d(ln x)/dx = 1/x

d(sin x)/dx = cos x

d(cos x)/dx = - sin x

d(tan x)/dx = sec² x

d(sec x)/dx = tan x * sec x

d(cot x)/dx = - cosec²x

d(cosec x)/dx = - cosec x * cot x

Answered by TrustedAnswerer19
64

Answer:

Given,

 \sf \: y = ( {x}^{2}  + 1)(2x - 1)

We have to find its first derivatives.

But, firstly we have to know these :

 \pink{ \odot \:  \sf \: \frac{d \: uv}{dx}  = u \frac{d \: v}{dx}  + v \frac{d \: u}{dx}  }\\   \\ \orange{ \odot \:  \:  \sf  \frac{d(u \pm v)}{dx}  =   \frac{d \: u}{dx}  \pm \:  \frac{d \: v}{dx}  }\\  \\  \blue{ \odot \:  \:  \sf \:  \frac{d {x}^{n} }{dx}  = n {x}^{n - 1} } \\  \\  \red {\odot \sf \:  \frac{d \: (constant)}{dx}  = 0}

Solution :

 \sf \:  \frac{dy}{dx}  =  \frac{d \: ( {x}^{2}  + 1)(2x - 1)}{dx}  \\  \\  \sf \:  \:  \:  \:  \:  \:  \:  = ( {x}^{2}  + 1) \frac{d \: (2x - 1)}{dx}  + (2x - 1) \frac{d \: ( {x}^{2} + 1) }{dx}  \\  \\ \sf \:  \:  \:  \:  \:  \:  \:  = ( {x}^{2}  + 1) \{  \frac{d \: 2x}{dx}  -  \frac{d \:( 1)}{dx} \} + (2x - 1) \{  \frac{d \:  {x}^{2} }{dx}  +  \frac{d \: (1)}{dx} \} \\  \\ \sf \:  \:  \:  \:  \:  \:  \:  = ( {x}^{2}  + 1)(2 - 0) + (2x - 1)(2x + 0) \\  \\ \sf \:  \:  \:  \:  \:  \:  \:  = 2( {x}^{2}  + 1) + 2x(2x - 1) \\  \\ \sf \:  \:  \:  \:  \:  \:  \:  = 2 {x}^{2}  + 2 + 4 {x}^{2}  - 2 x\\  \\ \sf \:  \:  \:  \:  \:  \:  \:  = 6 {x}^{2}    - 2x + 2\\  \\  \\  \\  \:  \:  \:  \:  \:  \:  \:  \: \green{ \boxed {\sf \therefore  \frac{dy}{dx}  = 6 {x}^{2}  - 2x + 2}}

Similar questions