Science, asked by amanatsahibb, 1 month ago

Q1.integration of √ ( a² - x² ) dx is?​

Answers

Answered by Woziha
1

Answer:

∫dx√a2−x2=arcsin(xa)+C Explanation:∫dx√a2−x2After using x=asiny and dx=acosy⋅dy transforms, this integral became∫acosy⋅dyacosy=∫dy=y+cAfter using x=asiny and y=arcsin(xa) inverse transforms, I found∫dx√a2−x2=arcsin(xa)+C

Explanation:

please mark me as brainiest.

Answered by TrustedAnswerer19
41

Answer:

 \orange{   \sf\displaystyle \int \sqrt{ {a}^{2} -  {x}^{2}  }  = \sf =  \frac{ {a}^{2} }{2}   {sin}^{ - 1}  \frac{x}{a}  +  \frac{x}{2}  \sqrt{ {a}^{2}  -  {x}^{2} }  + c}

Step-by-step explanation:

 \bf \: given \\  \displaystyle \:  \int \sqrt{ {a}^{2} -  {x}^{2}  } \:  dx \\  \sf  substitute \\  \sf\:  \: x = asin \theta \:  \implies \: \theta =  {sin}^{ - 1}  \frac{x}{a}  \:  \:  \: and \\  \sf \:  \pink{dx = acos\theta \: d\theta \: } \\  \bf \: now \\  \\   \displaystyle \:  \int \sqrt{ {a}^{2} -  {x}^{2}  }  \: dx \\   =  \sf \int \sqrt{ {a}^{2}  -  {a}^{2}  {sin}^{2} \theta}  \:  \: acos\theta \: d\theta \\ =   \sf \int \sqrt{ {a}^{2} (1 -  {sin}^{2} \theta)}  \:  \: acos\theta \: d\theta \\   =   \sf \int \: a \sqrt{ {1 -  {sin}^{2} \theta} }  \: a  cos\theta \: d\theta \\  =    \sf \int {a}^{2} . {cos}^{2} \theta \: d\theta \:  \\  =    \sf {a}^{2}  \int \:  \frac{1}{2} (1 + cos2\theta) \: d\theta \:  \:  \:  \:    \sf \green{\{ \because \: 2 {cos}^{2} \theta = 1 + cos2\theta \}} \\   \sf=  \frac{ {a}^{2} }{2} (\theta +  \frac{sin2\theta}{2} ) + c \:  \:  \:  \:  \:  \:  \:  \ \sf \red{ \{c = integral \: constant \}} \\  \\  \sf =  \frac{ {a}^{2} }{2} (\theta +  \frac{2sin\theta \: cos\theta}{2} ) + c \\  \\  \sf =  \frac{ {a}^{2} }{2}(\theta + sin \theta \:  \sqrt{1 -  {sin}^{2}\theta } ) + c \\  \\  \sf =  \frac{ {a}^{2} }{2} ( {sin}^{ - 1}  \frac{x}{a}  +  \frac{x}{a}  \sqrt{1 -  \frac{ {x}^{2} }{ {a}^{2} } } ) + c \\  \\  \sf =  \frac{ {a}^{2} }{2}  {sin}^{ - 1} \frac{x}{a}  +  \frac{ {a}^{2} }{2} . \frac{x}{ {a}^{2} }  \sqrt{ {a}^{2} -  {x}^{2}  }  + c \\  \\  \sf =  \frac{ {a}^{2} }{2}   {sin}^{ - 1}  \frac{x}{a}  +  \frac{x}{2}  \sqrt{ {a}^{2}  -  {x}^{2} }  + c

Similar questions