Math, asked by amanatsahibb, 1 month ago

Q1.integration of √ ( a² - x² ) dx is?​​

❥Anushka࿐​​

Answers

Answered by senboni123456
6

Step-by-step explanation:

We have,

 \int \sqrt{ {a}^{2} -  {x}^{2}  } dx \\

 \tt\purple{Put\:\:x=a\sin(\theta)}

 \tt\purple{\implies\:dx=a\cos(\theta)\:d\theta}

So,

 \int \sqrt{ {a}^{2} -  {a}^{2}  \sin^{2} ( \theta)  } .a \cos( \theta)  \: d \theta \\

  = a\int \sqrt{ {a}^{2} (1-   \sin^{2} ( \theta))  }. \cos( \theta)  \: d \theta \\

  = a\int \: a \sqrt{1-   \sin^{2} ( \theta)  }. \cos( \theta)  \: d \theta \\

  = a^{2} \int \:    \cos( \theta) . \cos( \theta)  \: d \theta \\

  = a^{2} \int \:    \cos^{2} ( \theta)  \: d \theta \\

  = a^{2} \int \:  \frac{  1 +  \cos ( 2\theta)}{2}  \: d \theta \\

  =  \frac{a^{2}}{2} \int \:   \{  1 +  \cos ( 2\theta) \}  \: d \theta \\

  =  \frac{a^{2}}{2} \int \:    1. d\theta+   \frac{ {a}^{2} }{2} \int \cos ( 2\theta)   \: d \theta \\

  =  \frac{a^{2}}{2} \int \:   d\theta+   \frac{ {a}^{2} }{2} \int \cos ( 2\theta)   \: d \theta \\

  =  \frac{a^{2}}{2} .\theta+   \frac{ {a}^{2} }{2} . \frac{\sin ( 2\theta)}{2}   + C\\

  =  \frac{a^{2}}{2} .\theta+   \frac{ {a}^{2} }{2} . \frac{2\sin ( \theta) \cos( \theta) }{2}   + C \\

  =  \frac{a^{2}}{2} .\theta+   \frac{ {a}^{2} }{2} . \sin ( \theta) \cos( \theta)  +C   \\

Now, simce,  x=a\sin(\theta), so,

\theta=\sin^{-1}\bigg(\frac{x}{a}\bigg)\\

So, the required integral becomes

  =  \frac{a^{2}}{2} . \sin^{ - 1}  \bigg( \frac{x}{a}  \bigg)+   \frac{ {a}^{2} }{2} . \sin  \bigg\{ \sin ^{ - 1}   \bigg(\frac{x}{a}  \bigg)   \bigg\} \cos \bigg \{  \sin ^{ - 1} \bigg( \frac{x}{a}  \bigg)  \bigg \} +C   \\

  =  \frac{a^{2}}{2}  \sin^{ - 1}  \bigg( \frac{x}{a}  \bigg)+   \frac{ {a}^{2} }{2}.    \bigg(\frac{x}{a}  \bigg)  . \sqrt{1 - \sin^{2}  \bigg \{  \sin ^{ - 1} \bigg( \frac{x}{a}  \bigg)  \bigg \} }+C   \\

  =  \frac{a^{2}}{2}  \sin^{ - 1}  \bigg( \frac{x}{a}  \bigg)+   \frac{ {a}^{2} }{2}.    \bigg(\frac{x}{a}  \bigg)  . \sqrt{1 -   \bigg( \frac{x}{a}  \bigg)^{2}  }+C   \\

  =  \frac{a^{2}}{2}  \sin^{ - 1}  \bigg( \frac{x}{a}  \bigg)+   \frac{ {a}^{2} }{2}.    \bigg(\frac{x}{a}  \bigg)  . \sqrt{1 -    \frac{x^{2} }{a^{2} }    }+C   \\

  =  \frac{a^{2}}{2}  \sin^{ - 1}  \bigg( \frac{x}{a}  \bigg)+   \frac{ {a}^{2} }{2}.    \bigg(\frac{x}{a}  \bigg)  . \sqrt{  \frac{a^{2}  - x^{2} }{a^{2} }    }+C   \\

  =  \frac{a^{2}}{2}  \sin^{ - 1}  \bigg( \frac{x}{a}  \bigg)+   \frac{ {a}^{2} }{2}.    \bigg(\frac{x}{a^{2} }  \bigg)  . \sqrt{  a^{2}  - x^{2}    }+C   \\

  =  \frac{a^{2}}{2}  \sin^{ - 1}  \bigg( \frac{x}{a}  \bigg)+   \frac{ x }{2}\sqrt{  a^{2}  - x^{2}    }+C   \\

  =   \sf \:  \red{  \frac{ x }{2}\sqrt{  a^{2}  - x^{2}    } +   \frac{a^{2}}{2}  \sin^{ - 1}  \bigg( \frac{x}{a}  \bigg)+ C }  \\

Similar questions