Physics, asked by Anonymous, 1 month ago

Q1.lim
3
2-13 cos x-sin x
(6x-7)
2
π
X->
6
plz ans it correct step by step!​

Attachments:

Answers

Answered by tanyasharma50
0

Answer:

EXPLANATION.

\sf \implies \displaystyle \lim_{x \to \frac{\pi}{6} } \bigg[\dfrac{2 - \sqrt{3}cosx - sinx }{(6x - \pi)^{2} } \bigg].⟹

x→

6

π

lim

[

(6x−π)

2

2−

3

cosx−sinx

].

As we know that,

First we put the value of x = π/6 in equation and check their indeterminant form, we get.

\sf \implies \displaystyle \lim_{x \to \frac{\pi}{6} } \bigg[\dfrac{2 - \sqrt{3} cos \times \dfrac{\pi}{6} - sin \times \dfrac{\pi}{6} }{(6 \times \dfrac{\pi}{6} - \pi)^{2} } \bigg]. < /p > < p > < /p > < p >⟹

x→

6

π

lim

[

(6×

6

π

−π)

2

2−

3

cos×

6

π

−sin×

6

π

].</p><p></p><p>

\sf \implies \displaystyle \lim_{x \to \frac{\pi}{6} } \bigg[ \dfrac{2 - \sqrt{3} \times cos30 \degree - sin 30 \degree }{(\pi - \pi)^{2} } \bigg]⟹

x→

6

π

lim

[

(π−π)

2

2−

3

×cos30°−sin30°

]

\sf \implies \displaystyle \lim_{x \to \frac{\pi}{6} } \bigg[\dfrac{2 - \sqrt{3} \times \dfrac{\sqrt{3} }{2} - \dfrac{1}{2} }{(\pi - \pi)^{2} } \bigg].⟹

x→

6

π

lim

[

(π−π)

2

2−

3

×

2

3

2

1

].

\sf \implies \displaystyle \lim_{x \to \frac{\pi}{6} } \bigg[ \dfrac{2 - \dfrac{3}{2} - \dfrac{1}{2} }{(\pi - \pi)^{2} } \bigg] = \dfrac{0}{0}⟹

x→

6

π

lim

[

(π−π)

2

2−

2

3

2

1

]=

0

0

As we can see that,

It is in the form of 0/0 indeterminant.

Now, we can apply L-HOSPITAL'S RULE, we get.

\sf \implies \displaystyle \lim_{x \to \frac{\pi}{6} } \bigg[\dfrac{\dfrac{d(2)}{dx} - \dfrac{d(\sqrt{3} cosx)}{dx} - \dfrac{d(sinx)}{dx} }{\bigg(\dfrac{d(6x)}{dx} - \dfrac{d(\pi)}{dx} \bigg)^{2} } \bigg]. < /p > < p >⟹

x→

6

π

lim

[

(

dx

d(6x)

dx

d(π)

)

2

dx

d(2)

dx

d(

3

cosx)

dx

d(sinx)

].</p><p>

\sf \implies \displaystyle \lim_{x \to \frac{\pi}{6} } \bigg[\dfrac{\sqrt{3} sinx - cosx}{2 (6x - \pi) \times 6} \bigg] < /p > < p >⟹

x→

6

π

lim

[

2(6x−π)×6

3

sinx−cosx

]</p><p>

\sf \implies \displaystyle \lim_{x \to \frac{\pi}{6} } \bigg[ \dfrac{\sqrt{3} sinx - cosx }{12(6x - \pi)} \bigg].⟹

x→

6

π

lim

[

12(6x−π)

3

sinx−cosx

].

Now, we can again apply L-HOSPITAL'S RULE, we get.

\sf \implies \displaystyle \lim_{x \to \frac{\pi}{6} } \bigg[\dfrac{\sqrt{3}cosx + sinx }{72} \bigg].⟹

x→

6

π

lim

[

72

3

cosx+sinx

].

Put the value of x = π/6 in equation, we get.

\sf \implies \displaystyle \lim_{x \to \frac{\pi}{6} } \bigg[ \dfrac{\sqrt{3} \times cos \times \dfrac{\pi}{6} + sin \times \dfrac{\pi}{6} }{72} \bigg].⟹

x→

6

π

lim

[

72

3

×cos×

6

π

+sin×

6

π

].

\

sf \implies \displaystyle \lim_{x \to \frac{\pi}{6} } \bigg[ \dfrac{\sqrt{3} \times \dfrac{\sqrt{3} }{2} + \dfrac{1}{2} }{72} \bigg].sf⟹

x→

6

π

lim

[

72

3

×

2

3

+

2

1

].

\sf \implies \displaystyle \lim_{x \to \frac{\pi}{6} } \bigg[\dfrac{\dfrac{3}{2} + \dfrac{1}{2} }{72} \bigg]. = \dfrac{1}{36}⟹

x→

6

π

lim

[

72

2

3

+

2

1

].=

36

1

\sf \implies \displaystyle \lim_{x \to \frac{\pi}{6} }

\bigg[\dfrac{2 - \sqrt{3}cosx - sinx }{(6x - \pi)^{2} } \bigg]. = \dfrac{1}{36}[

(6x−π)

2

2−

3

cosx−sinx

].=

36

1

MORE INFORMATION.

\sf \implies (1)= \displaystyle \lim_{x \to \infty} \bigg( 1 + \dfrac{a}{x} \bigg)^{x}⟹(1)=

x→∞

lim

(1+

x

a

)

x

\sf \implies(2) = \displaystyle \lim_{x \to 0} \dfrac{a^{x} - 1}{x}⟹(2)=

x→0

lim

x

a

x

−1

\sf \implies (3) =\displaystyle \lim_{x \to0} = \dfrac{e^{x} - 1}{x} = 1⟹(3)=

x→0

lim

=

x

e

x

−1

=1

\sf \implies(4) = \displaystyle \lim_{x \to a} \dfrac{x^{n} - a^{n} }{x - a} = n a^{n - 1}⟹(4)=

x→a

lim

x−a

x

n

−a

n

=na

n−1

\sf \implies (5) = \displaystyle \lim_{x \to 0} \dfrac{log(1 + x)}{x}⟹(5)=

x→0

lim

x

log(1+x)

\sf \implies (6) = \displaystyle \lim_{x \to 0} \dfrac{(1 + x)^{n} - 1}{x}⟹(6)=

x→0

lim

x

(1+x)

n

−1

\sf \implies(7) = \displaystyle \lim_{x \to \infty} \dfrac{sinx}{x} = \lim_{n \to \infty} \dfrac{cosx}{x} = 0.⟹(7)=

x→∞

lim

x

sinx

=

n→∞

lim

x

cosx

=0.

\sf \implies(8) = \displaystyle \lim_{x \to \infty} \dfrac{sin(1/x)}{(1/x)} = 1.⟹(8)=

x→∞

lim

(1/x)

sin(1/x)

=1.

Similar questions