Math, asked by MrPoliceman, 1 month ago

Q1.Number of real solution of the equation 
\sqrt{log_{10}(-x)} = log_{10}\sqrt{x^{2} }
​ is
(a) none
(b) exactly 1
(c) exactly 2
(d) 4



Nospams✍️​

Answers

Answered by shadowsabers03
156

Given,

\small\text{$\longrightarrow\sqrt{\log_{10}(-x)}=\log_{10}\sqrt{x^2}$}

\small\text{$\longrightarrow\sqrt{\dfrac{\log(-x)}{\log10}}=\dfrac{\log|x|}{\log10}$}

First let us find domain of the equation.

The restrictions are,

  • \small\text{$-x\in(0,\ \infty)\quad\dots(i)$}
  • \small\text{$\dfrac{\log(-x)}{\log10}\in\left[0,\ \infty)\quad\dots(ii)$}
  • \small\text{$|x|\in\left(0,\ \infty)\quad\dots(iii)$}

From (i),

\small\text{$\longrightarrow x\in(-\infty,\ 0)\quad\dots(1)$}

From (ii),

\small\text{$\longrightarrow\log(-x)\in\left[0,\ \infty)$}

\small\text{$\longrightarrow-x\in\left[1,\ \infty)$}

\small\text{$\longrightarrow x\in\left(-\infty,\ -1]\quad\dots(2)$}

From (iii),

\small\text{$\longrightarrow x\in\mathbb{R}-\{0\}\quad\dots(3)$}

Taking (1) ∧ (2) ∧ (3),

\small\text{$\longrightarrow x\in\left(-\infty,\ -1]$}

This is the domain. From this we can see \small\text{$x<0$} so \small\text{$|x|=-x.$}

Then our equation becomes,

\small\text{$\longrightarrow\dfrac{\sqrt{\log(-x)}}{\sqrt{\log10}}=\dfrac{\log(-x)}{\log10}$}

\small\text{$\longrightarrow\sqrt{\log10\cdot\log(-x)}=\log(-x)$}

\small\text{$\longrightarrow\log10\cdot\log(-x)=\log^2(-x)$}

\small\text{$\longrightarrow\log^2(-x)-\log10\cdot\log(-x)=0$}

\small\text{$\longrightarrow\log(-x)\big(\log(-x)-\log10\big)=0$}

\small\text{$\Longrightarrow\log(-x)\in\{0,\ \log10\}$}

\small\text{$\longrightarrow-x\in\{1,\ 10\}$}

\small\text{$\longrightarrow\underline{\underline{x\in\{-10,\ -1\}}}$}

So there are exactly two solutions. Hence (c) is the answer.


amansharma264: Excellent
mddilshad11ab: Great¶
Answered by Anonymous
297

Answer:

Question :-

  •  \sqrt{ log( - x) }  =  log_{10}( \sqrt{x {}^{2} } )
  • is,

  1. none
  2. exactly 1
  3. exactly 2.
  4. 4.

Answer :-

  • Here we get given question answer as number of real solution of a equation has exactly 2 solutions.

Given :-

  • Here given some real solution that is ,

 \sqrt{ log( - x) }  =  log_{10}( \sqrt{ {x}^{2} } )

To find :-

  • The number of real solution.

Solution :-

  • Here refer the given attachment for better understanding.
  • It helps you a lot.

Hope it helps u mate.

\mathcal\purple{Thank you .}

Attachments:

mddilshad11ab: Nice¶
Similar questions