Physics, asked by llcutull, 2 months ago

Q1.Rationalise the denominator
(i) 1/√7 (ii) 1/√7-√6
(iii) 1/√5+√2 (iv) 1/√7-2​

Answers

Answered by oObrainlyreporterOo
7

Explanation:

(i) \sf \dfrac{1}{\sqrt{7}} </p><p>

\longrightarrow \sf \dfrac{1}{\sqrt{7}} \times \dfrac{\sqrt{7}}{\sqrt{7}}

\longrightarrow \pmb{\sf \dfrac{\sqrt{7}}{7}}

Hence, Rationalised!!

(ii) \sf \dfrac{1}{\sqrt{7} - \sqrt{6}} </p><p>

\longrightarrow \sf \dfrac{1}{\sqrt{7}-\sqrt{6}} \times \dfrac{\sqrt{7}+\sqrt{6}}{\sqrt{7}+\sqrt{6}}

\longrightarrow \sf \dfrac{\sqrt{7}+\sqrt{6}}{(\sqrt{7})^{2}-(\sqrt{6})^{2}}

\longrightarrow \sf \dfrac{\sqrt{7}+\sqrt{6}}{7-6}</p><p>	</p><p> </p><p>

\longrightarrow \sf \dfrac{\sqrt{7}+\sqrt{6}}{1}

\longrightarrow \pmb{\sf \sqrt{7}+\sqrt{6}}

Hence, Rationalised!!

(iii) \sf \dfrac{1}{\sqrt{5} + \sqrt{2}} </p><p>

\longrightarrow \sf \dfrac{1}{\sqrt{5} + \sqrt{2}} \times \dfrac{\sqrt{5}-\sqrt{2}}{\sqrt{5} - \sqrt{3}}

\longrightarrow \sf \dfrac{\sqrt{5 }- \sqrt{2}}{(\sqrt{5})^{2}- (\sqrt{2})^{2}}

\longrightarrow \sf \dfrac{\sqrt{5}- \sqrt{2}}{5-2}

\longrightarrow \pmb{\sf \dfrac{\sqrt{5}-\sqrt{2}}{3}}

Hence, Rationalised!!

(iv) \sf \dfrac{1}{\sqrt{7} - 2} </p><p>

\longrightarrow \sf \dfrac{1}{\sqrt{7} - 2} \times \dfrac{\sqrt{7} + 2}{\sqrt{7}+2}

\longrightarrow \sf \dfrac{\sqrt{7} + 2}{(\sqrt{7})^{2}-(2)^{2}}

\longrightarrow \sf \dfrac{\sqrt{7} + 2}{7-4}

\longrightarrow \pmb{\sf \dfrac{\sqrt{7} + 2}{3}}

Hence, Rationalised!!

Identity used :-

(a + b) (a - b) = a² - b²

Similar questions