Math, asked by mizzzcutiepie, 1 month ago

Q1.Solve pls

Question in the attachment

Attachments:

Answers

Answered by PRINCE100001
46

Step-by-step explanation:

Question :

Find the derivative of the following function ( it is to be understood that a, b, c and d are fixed non-zero constants and m and n are integers ) :-

\sf \: (ax + b) ^{n} ( {cx + d})^{m}

Solution :

\begin{gathered}:\implies \sf{\dfrac{dy}{dx} = \dfrac{d[(ax + b)^{n}\cdot(cx + d)^{m}]}{dx}} \\ \\ \\ \end{gathered}

By applying the product rule of differentiation, we get :

\begin{gathered}\underline{\sf{\bigstar\:Product\:Rule\:of\: Differentiation :}} \\ \\ :\implies\sf{\dfrac{d(vu)}{dx} = v\cdot\dfrac{du}{dx} + u\cdot\dfrac{dv}{dx}} \\ \\ \\ \end{gathered}

</p><p>\begin{gathered}:\implies \sf{\dfrac{dy}{dx} = [(cx + d)^{m}\cdot\dfrac{d[(ax + b)^{n}]}{dx} + [(ax + b)^{n}\cdot\dfrac{d[(cx + d)^{m}]}{dx}} \\ \\ \\ \end{gathered}

First,

let us find the derivative of (ax + b)^n :

\begin{gathered}:\implies \sf{\dfrac{dy}{dx} = \dfrac{d[(ax + b)^{n}]}{dx}} \\ \\ \end{gathered} </p><p>

By applying the chain rule of differentiation, we get :

\begin{gathered}\underline{\sf{\bigstar\: Chain\:Rule\:of\: Differentiation :}} \\ \\ :\implies \sf{\dfrac{dy}{dx} = \dfrac{dy}{du}\cdot\dfrac{du}{dx}} \\ \\ \\ \end{gathered}

\begin{gathered}:\implies \sf{\dfrac{dy}{dx} = \dfrac{d[(ax + b)^{n}]}{d(ax + b)}\cdot\dfrac{d(ax + b)}{dx}} \\ \\ \\ \end{gathered} </p><p></p><p>

</p><p>\begin{gathered}:\implies \sf{\dfrac{dy}{dx} = n(ax + b)^{(n - 1)}\cdot\dfrac{d(ax + b)}{dx}} \\ \\ \\ \end{gathered}

\begin{gathered}:\implies \sf{\dfrac{dy}{dx} = n(ax + b)^{(n - 1)}\cdot\dfrac{d(ax)}{dx} + \dfrac{d(b)}{dx}} \\ \\ \\ \end{gathered} </p><p></p><p>

\begin{gathered}:\implies \sf{\dfrac{dy}{dx} = n(ax + b)^{(n - 1)}\cdot(a + 0)} \\ \\ \\ \end{gathered} </strong></p><p></p><p><strong>[tex]\begin{gathered}:\implies \sf{\dfrac{dy}{dx} = n(ax + b)^{(n - 1)}\cdot(a + 0)} \\ \\ \\ \end{gathered}

\begin{gathered}:\implies \sf{\dfrac{dy}{dx} = an(ax + b)^{(n - 1)}} \\ \\ \end{gathered} </p><p>

\begin{gathered}\boxed{\therefore \sf{\dfrac{d[(ax + b)^{n}]}{dx} = an(ax + b)^{(n - 1)}}} \\ \\ \end{gathered}

Now, the derivative of (cx + d)^m :

\begin{gathered}:\implies \sf{\dfrac{dy}{dx} = \dfrac{d[(cx + d)^{m}]}{dx}} \\ \\ \end{gathered} </p><p>

By applying the chain rule of differentiation, we get :

\begin{gathered}\underline{\sf{\bigstar\: Chain\:Rule\:of\: Differentiation :}} \\ \\ :\implies \sf{\dfrac{dy}{dx} = \dfrac{dy}{du}\cdot\dfrac{du}{dx}} \\ \\ \\ \end{gathered} </p><p></p><p>

\begin{gathered}:\implies \sf{\dfrac{dy}{dx} = \dfrac{d[(cx + d)^{m}]}{d(cx + d)}\cdot\dfrac{d(cx + d)}{dx}} \\ \\ \\ \end{gathered} </p><p>

\begin{gathered}:\implies \sf{\dfrac{dy}{dx} = m(cx + d)^{(m - 1)}\cdot\dfrac{d(cx + d)}{dx}} \\ \\ \\ \end{gathered} </p><p>

\begin{gathered}:\implies \sf{\dfrac{dy}{dx} = m(cx + d)^{(m - 1)}\cdot\dfrac{d(cx)}{dx} + \dfrac{d(d)}{dx}} \\ \\ \\ \end{gathered} </p><p></p><p> </p><p>

\begin{gathered}:\implies \sf{\dfrac{dy}{dx} = m(cx + d)^{(m - 1)}\cdot(c + 0)} \\ \\ \\ \end{gathered} </p><p>

\begin{gathered}:\implies \sf{\dfrac{dy}{dx} = cm(cx + d)^{(m - 1)}} \\ \\ \end{gathered} </p><p>

\begin{gathered}\boxed{\therefore \sf{\dfrac{d[(cx + d)^{m}]}{dx} = cm(cx + d)^{(m - 1)}}} \\ \\ \end{gathered} </p><p></p><p>

Now by substituting the derivative of (ax + b)^n and (cx + d)^m in the equation, we get :

\begin{gathered}:\implies \sf{\dfrac{dy}{dx} = [(cx + d)^{m}\cdot\dfrac{d[(ax + b)^{n}]}{dx} + [(ax + b)^{n}\cdot\dfrac{d[(cx + d)^{m}]}{dx}} \\ \\ \\ \end{gathered} </p><p>

\begin{gathered}:\implies \sf{\dfrac{dy}{dx} = [(cx + d)^{m}\cdot an(ax + b)^{(n - 1)}] + [(ax + b)^{n}\cdot cm(cx + d)^{(m - 1)}]} \\ \\ \\ \end{gathered} </p><p>

By taking (ax + b)^(n - 1) and (cx + d)^(m - 1) common in the equation, we get :

\begin{gathered}:\implies \sf{\dfrac{dy}{dx} = [cm(cx + d)^{m}\cdot an(ax + b)^{n}] + [(ax + b)^{n - 1)}\cdot(cx + d)^{(m - 1)}]} \\ \\ \\ \end{gathered} </p><p>

\begin{gathered}\underline{\therefore \sf{\dfrac{dy}{dx} = [cm(cx + d)^{m}\cdot an(ax + b)^{n}] + [(ax + b)^{n - 1)}\cdot(cx + d)^{(m - 1)}]}} \\ \\ \\ \end{gathered} </p><p></p><p>

Answered by Anonymous
69

Given :

a, b, c and d are fixed non-zero constants and m, n are integers.

\\

To Find :

The derivative of (ax + b)" (cx + d)m satisfying the given condition.

\\

SOLUTION:-

\\

Given that :

 \sf y = {(ax + b)}^{n} {(cx + d)}^{m} \\

where, a and b are constants; m and n are integers.

\\

we are asked to find its derivative.

 \\   \maltese \underline{ \sf  \:  Product \:  rule :  -  } \\

  \\   : \implies \sf y = f(x) \times g(x) \\ \\

\\  \sf   :  \implies\frac{dy}{dx}  = f(x) \times  \frac{d}{dx}[g(x) ] + g(x) \times  \frac{d}{dx} [f(x) ] \\ \\

Applying the same concept :-

\\ :\implies \sf y = {(ax + b)}^{n} {(cx + d)}^{m}\\

  \\:  \implies \sf   \dfrac{dy}{dx}  =  {(ax + b)}^{n}. \dfrac{d}{dx} [ {(cx + d)}^{m} ] +  {(cx + d)}^{m} . \dfrac{d}{dx} [ {(ax + b)}^{n} ]  -  -  - (1)\\ \\

Now, let's find out the derivative of (cx+d)^m

\\ : \implies \sf  \dfrac{d}{dx} [ {(cx + d)}^{m} ] = m. {(cx + d)}^{(m - 1)} .(c + 0) \\ \\

 \\   : \implies \boxed{\sf  \dfrac{d}{dx} [ {(cx + d)}^{m} ] = cm {(cx + d)}^{(m - 1)}} -  -  - (2)  \\\\

Now, let's find out the derivative of (ax+b)^n

 \\ \\ : \implies \sf  \dfrac{d}{dx} [ {(ax + b)}^{n} ] = n. {(ax + d)}^{(n - 1)} .(a + 0) \\\\

   \\ : \implies \boxed{\sf  \dfrac{d}{dx} [ {(ax +b)}^{n} ] = an {(ax + b)}^{(n - 1)}} -  -  - (3)  \\\\

Substituting the values of eq. 2 and eq. 3 in eq. 1

 \\  \\:  \implies \sf   \dfrac{dy}{dx}  =  {(ax + b)}^{n}. \dfrac{d}{dx} [ {(cx + d)}^{m} ] +  {(cx + d)}^{m} . \dfrac{d}{dx} [ {(ax + b)}^{n} ]\\ \\

 \\ :  \implies \underline{\boxed{\sf   \dfrac{dy}{dx}  =  {(ax + b)}^{n}. cm {(cx + d)}^{m - 1}  +  {(cx + d)}^{m} . an {(an + b)}^{n - 1}}} \\ \\

That's the required derivative

Similar questions