Math, asked by lMsPrincessl, 1 month ago

Q1. Solve the question in the attachment.

❌ No spam ❌

Attachments:

Answers

Answered by mathdude500
1

\large\underline{\sf{Given \:Question - }}

\rm :\longmapsto\:A = \begin{bmatrix}  - 2 &  1\\ 0 & 3\end{bmatrix} \: and \: f(x) =  {2x}^{2} - 3x, \: find \: f(A)

 \:  \:  \:  \:  \:  \:  \: a) \: \:\begin{bmatrix} 14 &    1\\ 0 &  - 9\end{bmatrix}

 \:  \:  \:  \:  \:  \:  \: b) \: \:\begin{bmatrix}  - 14 &    1\\ 0 &  9\end{bmatrix}

 \:  \:  \:  \:  \:  \:  \: c) \: \:\begin{bmatrix}  14 &  - 1\\ 0 &  9\end{bmatrix}

 \:  \:  \:  \:  \:  \:  \: d) \: \:\begin{bmatrix}   - 14 &  - 1\\ 0 &   - 9\end{bmatrix}

\large\underline{\sf{Solution-}}

Given matrix is

\rm :\longmapsto\:A = \begin{bmatrix}  - 2 &  1\\ 0 & 3\end{bmatrix}

and

\rm :\longmapsto\:f(x) =  {2x}^{2} - 3x

So,

\rm :\longmapsto\:f(A) =  {2A}^{2} - 3A

So,

Consider

\rm :\longmapsto\: {A}^{2}

\rm \:  =  \:  \: \begin{bmatrix}  - 2 &  1\\ 0 & 3\end{bmatrix} \times \begin{bmatrix}  - 2 &  1\\ 0 & 3\end{bmatrix}

\rm \:  =  \:  \:\begin{bmatrix} 4 + 0 &   - 2 + 3\\ 0 + 0 & 0 + 9\end{bmatrix}

\rm \:  =  \:  \:\begin{bmatrix} 4 &  1\\ 0 & 9\end{bmatrix}

So,

\bf :\longmapsto\: {A}^{2}   =  \:  \:\begin{bmatrix} 4 &  1\\ 0 & 9\end{bmatrix}

Thus,

\bf :\longmapsto\:f(A) =  {2A}^{2} - 3A

\rm \:  =  \:  \:2\begin{bmatrix}  4 &  1\\ 0 & 9\end{bmatrix} - 3\begin{bmatrix}  - 2 &  1\\ 0 & 3\end{bmatrix}

\rm \:  =  \:  \:\begin{bmatrix}  8 &  2\\ 0 & 18\end{bmatrix} - \begin{bmatrix}  - 6 &  3\\ 0 & 9\end{bmatrix}

\rm \:  =  \:  \:\begin{bmatrix} 8 + 6 &  2 - 3\\ 0  - 0& 18 - 9\end{bmatrix}

\rm \:  =  \:  \:\begin{bmatrix} 14 &   - 1\\ 0 & 9\end{bmatrix}

Hence,

\rm :\longmapsto\: {2A}^{2}  - 3A \: =  \:  \:\begin{bmatrix} 14 &   - 1\\ 0 & 9\end{bmatrix}

  • So, Option (c) is correct.

Similar questions