Math, asked by StudyOwl01, 1 month ago

Q1.Students solve 2 no.


!Let's test your knowledge!

Attachments:

Answers

Answered by PRINCE100001
5

Step-by-step explanation:

Answer:

sinα - αcosα

Step-by-step explanation:

Given that,

\lim_{x\to\alpha}\;\;|\frac{x\sin\alpha-\alpha\sin x}{x-\alpha}|

Let x - α = h

Thus when x ⇒ α , h ⇒ 0

\lim_{h\to0}\;\;|\frac{(h+\alpha)\sin\alpha-\alpha\sin(h+\alpha)}{h}|

Now we will evaluate left hand limit and right and limit separately

For LHL:-

\begin{gathered}\lim_{h\to0}\;\;\frac{\alpha\sin\alpha[1-\cos(-h)]}{-h}+\sin\alpha-\frac{\alpha\sin(-h)\cos\alpha}{-h}\\\;\\=\lim_{h\to0}\;\;\frac{\alpha\sin\alpha(1-\cosh)}{-h}+\sin\alpha-\frac{\alpha\sin h\cos\alpha}{h}\\\;\\=\alpha\sin\alpha[\lim_{h\to0}\frac{(1-\cosh)}{-h}]+\sin\alpha-\alpha\cos \alpha[\lim_{h\to0}\frac{\sin h}{h}]\\\;\\=0+\sin\alpha-\alpha\cos\alpha\\\;\\=\sin\alpha-\alpha\cos\alpha\end{gathered}

For RHL:-

\begin{gathered}\lim_{h\to0}\;\;\frac{\alpha\sin\alpha[1-\cosh]}{h}+\sin\alpha-\frac{\alpha\sinh\cos\alpha}{h}\\\;\\=\lim_{h\to0}\;\;\frac{\alpha\sin\alpha(1-\cosh)}{h}+\sin\alpha-\frac{\alpha\sin h\cos\alpha}{h}\\\;\\=\alpha\sin\alpha[\lim_{h\to0}\frac{(1-\cosh)}{h}]+\sin\alpha-\alpha\cos \alpha[\lim_{h\to0}\frac{\sin h}{h}]\\\;\\=0+\sin\alpha-\alpha\cos\alpha\\\;\\=\sin\alpha-\alpha\cos\alpha\end{gathered}

Thus limit is (sinα - αcosα).

Answered by prince100001kidiwani
2

Answer:

Answer:

sinα - αcosα

Step-by-step explanation:

Given that,

\lim_{x\to\alpha}\;\;|\frac{x\sin\alpha-\alpha\sin x}{x-\alpha}|lim

x→α

x−α

xsinα−αsinx

Let x - α = h

Thus when x ⇒ α , h ⇒ 0

\lim_{h\to0}\;\;|\frac{(h+\alpha)\sin\alpha-\alpha\sin(h+\alpha)}{h}|lim

h→0

h

(h+α)sinα−αsin(h+α)

Now we will evaluate left hand limit and right and limit separately

For LHL:-

\begin{gathered}\begin{gathered}\lim_{h\to0}\;\;\frac{\alpha\sin\alpha[1-\cos(-h)]}{-h}+\sin\alpha-\frac{\alpha\sin(-h)\cos\alpha}{-h}\\\;\\=\lim_{h\to0}\;\;\frac{\alpha\sin\alpha(1-\cosh)}{-h}+\sin\alpha-\frac{\alpha\sin h\cos\alpha}{h}\\\;\\=\alpha\sin\alpha[\lim_{h\to0}\frac{(1-\cosh)}{-h}]+\sin\alpha-\alpha\cos \alpha[\lim_{h\to0}\frac{\sin h}{h}]\\\;\\=0+\sin\alpha-\alpha\cos\alpha\\\;\\=\sin\alpha-\alpha\cos\alpha\end{gathered} \end{gathered}

h→0

lim

−h

αsinα[1−cos(−h)]

+sinα−

−h

αsin(−h)cosα

=

h→0

lim

−h

αsinα(1−cosh)

+sinα−

h

αsinhcosα

=αsinα[

h→0

lim

−h

(1−cosh)

]+sinα−αcosα[

h→0

lim

h

sinh

]

=0+sinα−αcosα

=sinα−αcosα

For RHL:-

\begin{gathered}\begin{gathered}\lim_{h\to0}\;\;\frac{\alpha\sin\alpha[1-\cosh]}{h}+\sin\alpha-\frac{\alpha\sinh\cos\alpha}{h}\\\;\\=\lim_{h\to0}\;\;\frac{\alpha\sin\alpha(1-\cosh)}{h}+\sin\alpha-\frac{\alpha\sin h\cos\alpha}{h}\\\;\\=\alpha\sin\alpha[\lim_{h\to0}\frac{(1-\cosh)}{h}]+\sin\alpha-\alpha\cos \alpha[\lim_{h\to0}\frac{\sin h}{h}]\\\;\\=0+\sin\alpha-\alpha\cos\alpha\\\;\\=\sin\alpha-\alpha\cos\alpha\end{gathered} \end{gathered}

h→0

lim

h

αsinα[1−cosh]

+sinα−

h

αsinhcosα

=

h→0

lim

h

αsinα(1−cosh)

+sinα−

h

αsinhcosα

=αsinα[

h→0

lim

h

(1−cosh)

]+sinα−αcosα[

h→0

lim

h

sinh

]

=0+sinα−αcosα

=sinα−αcosα

Thus limit is (sinα - αcosα).

Similar questions