Math, asked by ps7223622, 7 months ago

Q1. The diameter of base and height of a right circular cone are 7 cm and 24cm
respectively. Find the volume of cone (in cmº).
किसी लम्बवृतीय शंकु के आधार का व्यास तथा ऊँचाई क्रमशः 7 सेमी. और 12 सेमी. है। इस शंकु
का आयतन (सेमी. में) ज्ञात करो।​

Answers

Answered by ToxicEgo
0

⭐Given:

Related to Cone:

  • Diameter (d) of base=7 cm

  • Radius (r) =3.5 cm.... [r=d/2]

  • Height (h) =24 cm

⭐ To Find:

  • Volume=?

⭐Solution:

We know that,

Volume of a cone=1/3×πr²h

___________________________

=1/3×22/7×(3.5) ²×24

=1/3×22/7×3.5×3.5×24

=22×0.5×3.5×8

=22×8×0.5×3.5

=176×1.75

=308

Therefore, The volume of a cone is 308 cm³.

For More Information:

(1) Slant Height of a cone(l) =h²+r²

(2) Total surface area of a cone=πr(l+r)

(3) Curved Surface area of a cone=πrl

.

.

.

.

.

.

.

.

.

.

.

@$îDDh¡163

Answered by TheProphet
2

Solution :

\underline{\bf{Given\::}}}}

  • Diameter of base of cone = 7 cm
  • Height of right circular cone = 24 cm

\underline{\bf{Explanation\::}}}}

Using formula of the volume of cone :

\boxed{\bf{Volume=\frac{1}{3} \pi r^{2}h }}}}

Radius of cone = 7/2 cm

\longrightarrow\sf{Volume\:_{(cone)} = \dfrac{1}{\cancel{3}} \times \dfrac{22}{\cancel{7}} \times \dfrac{7}{\cancel{2}} \times \dfrac{7}{\cancel{2}} \times \cancel{24} }\\\\\\\longrightarrow\sf{Volume\:_{(cone)} = (11\times 7\times 4)\:cm^{3} }\\\\\\\longrightarrow\sf{Volume\:_{(cone)}= (77 \times 4)\:cm^{3} }\\\\\\\longrightarrow\bf{Volume\:_{(cone)}= 308\:cm^{3} }

Thus;

The volume of cone will be 308 cm³ .

Similar questions