Math, asked by MichRadhik, 1 month ago

Q1.Using matrices, solve the following system of equations: 3x-y+z=5 , 2x-2y+3z=7 , x+y-z=-1​

Answers

Answered by PRINCE100001
6

Step-by-step explanation:

Given :

3x-y+z=5 , 2x-2y+3z=7 , x+y-z=-1

To Find : Solve Using matrices,

Solution:

3x-y+z=5 ,

2x-2y+3z=7 ,

x+y-z=-1

\begin{gathered}\left[\begin{array}{ccc}3&-1&1\\2&-2&3\\1&1&-1\end{array}\right] \left[\begin{array}{ccc}x\\y\\z\end{array}\right] = \left[\begin{array}{ccc}5\\7\\1\end{array}\right]\end{gathered}

\begin{gathered}A=\left[\begin{array}{ccc}3&-1&1\\2&-2&3\\1&1&-1\end{array}\right]\end{gathered}

\begin{gathered}X=\left[\begin{array}{ccc}x\\y\\z\end{array}\right]\end{gathered} </p><p>

\begin{gathered}B= \left[\begin{array}{ccc}5\\7\\1\end{array}\right]\end{gathered} </p><p>

X = A⁻¹B

| A | = 3(2 - 3) - (-1)(-2 - 3) + 1(2 - (-2))

= -3 - 5 + 4

= - 4

A⁻¹ = Adj A / | A |

\begin{gathered}Adj A =\left[\begin{array}{ccc}-1&amp;0&amp;-1\\5&amp;-4&amp;-7\\4&amp;-4&amp;-4\end{array}\right]\end{gathered}

\begin{gathered}X=\dfrac{-1}{4} \left[\begin{array}{ccc}-6\\-10\\-12\end{array}\right]\end{gathered} </p><p>

x = 3/2 , y = 5/2 , z = 3

Learn More:

Solve each of the following systems of equations by the method of ...

brainly.in/question/15918823

Find value of K such that system of equations are,(3k-8)x+3y+3z=0 ...

brainly.in/question/25303022

Similar questions