Math, asked by agnidsp3734, 1 year ago

Q1 Verify that y2 =4ax is a solution of the differential equation y= x dy/dx + a dx/dy

Answers

Answered by MaheswariS
14

\textbf{Given:}

y^2 =4ax............(1)

\text{Differentiate (1) with respect to x}

2y\;\frac{dy}{dx}=4a

\implies\bf\frac{dy}{dx}=\frac{2a}{y}

\text{Differentiate (1) with respect to y}

2y=4a\;\frac{dx}{dy}

\implies\bf\frac{dx}{dy}=\frac{y}{2a}

\text{Now,}

x\,\frac{dy}{dx}+a\,\frac{dx}{dy}

=x(\frac{2a}{y})+a(\frac{y}{2a})

=\frac{2ax}{y}+\frac{y}{2}

=\frac{\frac{y^2}{2}}{y}+\frac{y}{2}

=\frac{y}{2}+\frac{y}{2}

=y

\implies\boxed{\bf\,x\,\frac{dy}{dx}+a\,\frac{dx}{dy}=y}

Similar questions