Math, asked by JAANU10001, 7 days ago

Q1.x × (60-x)^3 differentiate​

Answers

Answered by PRINCE100001
11

Step-by-step explanation:

SOLUTION

TO DETERMINE

The differentiate

\displaystyle \sf{x {(60 -x)}^{3} }

EVALUATION

Here the given expression is

\displaystyle \sf{y = x {(60 -x)}^{3} }

Differentiating both sides with respect to x we get

\displaystyle \sf{ \frac{dy}{dx} = \frac{d}{dx} \bigg[x {(60 -x)}^{3}\bigg] } </p><p>

\displaystyle \sf{ \implies \frac{dy}{dx} = x. \frac{d}{dx} \bigg[ {(60 -x)}^{3}\bigg] + {(60 -x)}^{3} \frac{d}{dx}(x) }

\displaystyle \sf{ \implies \frac{dy}{dx} = - 3 x. {(60 -x)}^{2}+ {(60 -x)}^{3} } </p><p>

\displaystyle \sf{ \implies \frac{dy}{dx} = {(60 -x)}^{2} {( - 3x + 60 -x)}^{} }

\displaystyle \sf{ \implies \frac{dy}{dx} = {(60 -x)}^{2} {( 60 -4x)}^{} }

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. If integral of (x^-3)5^(1/x^2)dx=k5^(1/x^2), then k is equal to?

https://brainly.in/question/15427882

2. If integral of (x^-3)5^(1/x^2)dx=k5^(1/x^2), then k is equal to?

https://brainly.in/question/15427882

Answered by IIkuhuII
5

above answer is ur correct answer xd

Similar questions