Math, asked by saryka, 1 month ago

Q10. Find the value of (49)^{1 - log (2 base 7)} + 5^{-log (4 base 5)}​

Attachments:

Answers

Answered by Asterinn
108

 \rm  \longrightarrow  {(49)}^{(1 -  log_{7}2)}  +  {(5)}^{ -  log_{5}4 }  \\  \\ \rm  \longrightarrow  {(49)}^{(log_{7}7 -  log_{7}2)}  +  {(5)}^{ -  log_{5}4 }  \\  \\ \rm  \longrightarrow  {(49)}^{log_{7} (\frac{7}{2} ) }  +  {(5)}^{ -  log_{5}4 } \\  \\ \rm  \longrightarrow  {( {7}^{2} )}^{log_{7} (\frac{7}{2} ) }  +  {(5)}^{ -  log_{5}4 } \\  \\ \rm  \longrightarrow  {( {7} )}^{2log_{7} (\frac{7}{2} ) }  +  {(5)}^{ -  log_{5}4 } \\  \\ \rm  \longrightarrow  {( {7} )}^{log_{7}  {(\frac{7}{2} )}^{2}  }  +  {(5)}^{  log_{5} {(4)}^{ - 1}  } \\  \\ \rm  \longrightarrow  {{ \bigg(\dfrac{7}{2} \bigg )}^{}}^{2log_{7}  {7}  }  +  {((4)^{ - 1})}^{  log_{5} 5  } \\  \\ \rm  \longrightarrow  {{ \bigg(\dfrac{7}{2} \bigg )}^{}}^{2 }  +   \frac{1}{4} \\  \\ \rm  \longrightarrow   \dfrac{49}{4}   +   \dfrac{1}{4} \\  \\ \rm  \longrightarrow   \dfrac{50}{4}   \\  \\ \rm  \longrightarrow   \dfrac{25}{2}

Additional Information :-

\boxed{\boxed{\begin{minipage}{4.2cm}\circ\sf\:\ln 1=0\\\circ\sf\:\ln e=1\\\circ\sf\:\ln x=y\leftrightarrow e^y=x\\\circ\sf\:e^{\ln x}=x,\:x>0\\\circ\sf\:\ln(e^x)=x,\:x\in\mathbb{\large R}\\\circ\sf\:\ln(xy)=\ln x+\ln y\\\circ\sf\:\ln(x/y)=\ln x-\ln y\\\circ\sf\:\ln(x^r)=r\ln x\\\circ\sf\:\ln x=log_e\:x\end{minipage}}}

Answered by mathdude500
99

Given Question :-

Evaluate:-

 \sf \:  {49}^{(1 -  log_{7}(2)) }  +  {5}^{ -  log_{5}(4) }

\huge\underline{\sf{Solution-}}

Identities used :-

 \boxed{ \blue{ \bf \:  log_{x}(y)  = \dfrac{ log(y) }{ log(x) } }}

\boxed{ \blue{ \bf \: {x}^{ log_{x}(y) }  = y}}

\boxed{ \blue{ \bf \: log(x) -  log(y) = log\dfrac{x}{y}}}

\boxed{ \blue{ \bf \: log( {x}^{y} )  = y log(x)}}

Let's solve the problem now!!

Consider

 \rm :\longmapsto\:\:  {49}^{(1 -  log_{7}(2)) }  +  {5}^{ -  log_{5}(4) }

\rm \: =\:\: \sf \:  {49}^{ \bigg(1 -  \dfrac{ log(2) }{ log(7) } \bigg)}  +  {5}^{log_{5} {4}^{ - 1}}

\rm \: =\:\: \sf \:  {49}^{ \bigg(\dfrac{  log(7) -  log(2) }{ log(7) } \bigg)}  +   {4}^{ - 1}

 \rm \:  =  \:  \:  {7}^{2 log_{7} \bigg(\dfrac{7}{2} \bigg) }  + \dfrac{1}{4}

 \rm \:  =  \:  \:  {7}^{log_{7} \bigg(\dfrac{7}{2} \bigg)^{2} }  + \dfrac{1}{4}

 \rm \:  =  \:  \:  {\bigg(\dfrac{7}{2}  \bigg) }^{2} + \dfrac{1}{4}

 \rm \:  =  \:  \:  \dfrac{49}{4} + \dfrac{1}{4}

 \rm \:  =  \:  \:  \dfrac{49 + 1}{4}

 \rm \:  =  \:  \:  \dfrac{50}{4}

 \rm \:  =  \:  \:  \dfrac{25}{2}

Additional Information :-

\boxed{ \blue{ \bf \:logx + logy =  log(xy)}}

\boxed{ \blue{ \bf \: log(1) = 0}}

\boxed{ \blue{ \bf \: log( {10}^{x} )  = x}}

\boxed{ \blue{ \bf \: log_{x}(y) = \dfrac{1}{ log_{y}(x) }}}

Similar questions