Math, asked by rawatrevanth, 8 months ago

Q10. Find the value of a and b from the following:
3
5-18
1
3+ V8
= a - bv8​

Attachments:

Answers

Answered by Anonymous
8

Step-by-step explanation:

CORRECT QUESTION :-

\begin{gathered}\\ \red \bigstar \displaystyle \tt \: prove \: that \: \dfrac{ \cos \theta }{1 + \sin \theta } + \dfrac{ \cos \theta }{1 - \sin \theta } = 2 \sec \theta \\ \\\end{gathered}

★provethat

1+sinθ

cosθ

+

1−sinθ

cosθ

=2secθ

GIVEN :-

\begin{gathered}\\ \red \bigstar \displaystyle \tt \: \dfrac{ \cos \theta }{1 + \sin \theta } + \dfrac{ \cos \theta }{1 - \sin \theta } = 2 \sec \theta \\ \\\end{gathered}

1+sinθ

cosθ

+

1−sinθ

cosθ

=2secθ

TO PROVE :-

\begin{gathered}\\ \red \bigstar \displaystyle \tt \: \dfrac{ \cos \theta }{1 + \sin \theta } + \dfrac{ \cos \theta }{1 - \sin \theta } = 2 \sec \theta \\ \\\end{gathered}

1+sinθ

cosθ

+

1−sinθ

cosθ

=2secθ

SOLUTION :-

\begin{gathered}\\ \red \bigstar \: \displaystyle \tt \: \dfrac{ \cos \theta }{1 + \sin \theta } + \dfrac{ \cos \theta }{1 - \sin \theta } = 2 \sec \theta \\\end{gathered}

1+sinθ

cosθ

+

1−sinθ

cosθ

=2secθ

Take L.H.S Part,

\begin{gathered}\\ \implies \displaystyle \tt \: \dfrac{ \cos \theta }{1 + \sin \theta } + \dfrac{ \cos \theta }{1 - \sin \theta } \\ \\\end{gathered}

1+sinθ

cosθ

+

1−sinθ

cosθ

\begin{gathered}\blue \bigstar \orange{ \tt \: Taking \: L.C.M \bigg(1 + \sin \theta\bigg)\bigg(1 - \sin \theta\bigg)} \\ \\\end{gathered}

★TakingL.C.M(1+sinθ)(1−sinθ)

\begin{gathered}\implies \displaystyle \tt \: \dfrac{ \cos \theta\bigg(1 - \sin \theta \bigg) + \cos \theta \bigg(1 + \sin \theta \bigg)} { \bigg(1 + \sin \theta \bigg) \bigg(1 - \sin \theta \bigg) } \\ \\\end{gathered}

(1+sinθ)(1−sinθ)

cosθ(1−sinθ)+cosθ(1+sinθ)

\begin{gathered}\displaystyle \tt \implies \: \dfrac{ \cos \theta - \cos \theta. \sin \theta + \cos \theta + \cos \theta. \sin \theta}{\bigg(1 + \sin \theta\bigg)\bigg(1 - \sin \theta\bigg)} \\ \\\end{gathered}

(1+sinθ)(1−sinθ)

cosθ−cosθ.sinθ+cosθ+cosθ.sinθ

\begin{gathered}\blue \bigstar \orange{\tt Using \: identity :- (a + b)(a -b) = a^{2} - b^{2}} \\ \\\end{gathered}

★Usingidentity:−(a+b)(a−b)=a

2

−b

2

\begin{gathered}\implies \displaystyle \tt \: \dfrac{ \cos \theta + \cos \theta}{(1) ^{2} - \sin ^{2} \theta } \\ \\\end{gathered}

(1)

2

−sin

2

θ

cosθ+cosθ

\begin{gathered}\implies \displaystyle \tt \: \dfrac{2 \cos \theta}{1 - \sin ^{2} \theta } \\ \\\end{gathered}

1−sin

2

θ

2cosθ

\begin{gathered}\blue \bigstar \orange{\tt Using \: identity :- 1 - \sin ^{2} \theta = \cos ^{2} \theta } \\ \\\end{gathered}

★Usingidentity:−1−sin

2

θ=cos

2

θ

\begin{gathered}\implies \displaystyle \tt \: \dfrac{2\cos \theta}{ \cos ^{2}\theta} \\ \\\end{gathered}

cos

2

θ

2cosθ

\begin{gathered}\implies \displaystyle \boxed{\tt \:2 \sec \theta} \\ \\\end{gathered}

2secθ

L.H.S = R.H.S

HENCE VERIFIED ✅

Answered by Kajalnaina40
0

Answer:

nice question 5-8

NX. jkcnf

Similar questions