Q11. Find the area of a quadrilateral ABCD whose sides are
9
cm,28cm and 15cm
and the angle between the first two sides is 90 degree
Answers
Answer:
AB= 9
BC= 40
CD= 28
DA= 15
join A and C to form a diagonal AC in quadrilateral ABCD
using pythagorean theorem,
AB ^(2) + BC ^(2) = AC ^(2)
9*9 + 40*40 = AC ^(2)
81 + 1600 = AC ^(2)
1681 = AC^(2)
\sqrt{1681}
1681
= AC
41 = AC
now, using herons formula, u can find the area of triangle ABC an d triangle ADC.
in triangle ABC
\sqrt{s(s-a)(s-b)(s-c)}
s(s−a)(s−b)(s−c)
= \sqrt{45(45-9)(45-40)(45-41)}
45(45−9)(45−40)(45−41)
= \sqrt{45(36) (5)(4)}
45(36)(5)(4)
= \sqrt{5*3*3*2*3*2*3*5*2*2}
5∗3∗3∗2∗3∗2∗3∗5∗2∗2
= \sqrt{5*5*3*3*2*2*3*3*2*2}
5∗5∗3∗3∗2∗2∗3∗3∗2∗2
= 5*3*2*3*2
= 5*36
= 180
in triangle ADC
\sqrt{s(s-a)(s-b)(s-c)}
s(s−a)(s−b)(s−c)
= \sqrt{42(42-28)(42-15)(42-41)}
42(42−28)(42−15)(42−41)
= \sqrt{42*14*27*1}
42∗14∗27∗1
= \sqrt{2*3*7*2*7*3*3*3}
2∗3∗7∗2∗7∗3∗3∗3
= \sqrt{2*2*7*7*3*3*3*3}
2∗2∗7∗7∗3∗3∗3∗3
=2*7*3*3*
= 14*9
= 126
area of ABC + area of ADC = area of ABCD
180 + 126 = 306