Q11) find the modulus and amplitude of the complex number 1-1
Answers
Answered by
4
Answer:
Let a complex number (z) = 1/1+i
\begin{gathered}z= \frac{1(1-i)}{(1+i)(1-i)} \\ z= \frac{1-i}{ 1^{2} - i^{2} } \\ z= \frac{1-i}{1-(-1)} = \frac{1-i}{1+1 } \\ z= \frac{1-i}{2} \end{gathered}
z=
(1+i)(1−i)
1(1−i)
z=
1
2
−i
2
1−i
z=
1−(−1)
1−i
=
1+1
1−i
z=
2
1−i
now,
z = 1/2 -i/2
so real part of z = x = 1/2
Imaginary part of z = y = 1/2
∴\begin{gathered}|z|= \sqrt{ x^{2} + y^{2} } \\ |z|= \sqrt{ (1/2)^{2} + (1/2)^{2} } \\ |z|= \sqrt{ \frac{2}{ 2^{2} } } = \frac{1}{ \sqrt{2} } \end{gathered}
∣z∣=
x
2
+y
2
∣z∣=
(1/2)
2
+(1/2)
2
∣z∣=
2
2
2
=
2
1
Argument = tan⁻¹(y/x)
Argument = tan^{-1} \frac{1/2}{1/2} = tan^{-1} \frac{1}{1} = \frac{ \pi }{4}Argument=tan
−1
1/2
1/2
=tan
−1
1
1
=
4
π
Similar questions