Math, asked by ananyaaggarwal210620, 1 month ago


Q11. Find the quadratic polynomial whose zeroes are 5 + √3 and 5 - √3.​

Answers

Answered by mathdude500
4

Given :-

  • Zeroes of a quadratic polynomial are 5 + √3 and 5 - √3.

To Find :-

  • The quadratic polynomial.

Solution :-

Let the zeroes of quadratic polynomial is represented as

\rm :\longmapsto\: \alpha  = 5 +  \sqrt{3}

\rm :\longmapsto\: \beta  = 5 -  \sqrt{3}

So,

Sum of the zeroes is

\rm :\longmapsto\: \alpha  +  \beta

 \rm \:  =  \: 5 +  \sqrt{3}  + 5 -  \sqrt{3}

 \rm \:  =  \: 10

\bf\implies \:\red{\boxed{\sf \: \alpha  +  \beta  = 10}}

Now,

Product of zeroes is

\rm :\longmapsto\: \alpha  \beta

 \rm \:  =  \: (5 +  \sqrt{3})(5 -  \sqrt{3})

 \rm \:  =  \:  {5}^{2}  -  {( \sqrt{3}) }^{2}

 \rm \:  =  \: 25 - 3

 \rm \:  =  \: 22

\bf\implies \:\red{\boxed{\sf \: \alpha    \beta  = 22}}

So,

Required quadratic polynomial f(x) is given by

\rm :\longmapsto\:f(x) = k( {x}^{2} - ( \alpha + \beta)x + \alpha\beta) \: where \: k \ne \: 0

\rm :\longmapsto\:f(x) = k( {x}^{2} -10x + 22) \: where \: k \ne \: 0

Additional Information :-

 \rm \:If \:  \alpha  \: and \:  \beta  \: are \: zeroes \: of \: f(x) =  {ax}^{2} + bx + c \: then

\red{\boxed{\sf \: \alpha  +  \beta  =  -  \: \dfrac{b}{a}}}

\red{\boxed{\sf \: \alpha \beta  = \: \dfrac{c}{a}}}

\red{\boxed{\sf \: { \alpha }^{2} +  { \beta }^{2} =  {( \alpha  +  \beta) }^{2}  - 2 \alpha  \beta }}

\red{\boxed{\sf \: { \alpha }^{3} +  { \beta }^{3} =  {( \alpha  +  \beta) }^{3}  - 3 \alpha  \beta ( \alpha   + \beta )}}

\red{\boxed{\sf \: | \alpha  -  \beta |  =  \sqrt{ {( \alpha   +  \beta }^{2}) - 4 \alpha  \beta}}}

Similar questions