Math, asked by dikshitasingh50, 3 months ago

Q11. Find the surface area of a sphere of radius 7 cm? *



616 cubic cm

161 cubic cm

212 cubic cm


Answers

Answered by Anonymous
4

Given:-

  • Radius of a sphere is 7 cm.

To find:-

  • Surface area of a sphere.

Solution:-

Formula used:-

Surface area of sphere = 4πr²

→ 4 × 22/7 × 7 × 7

→ 4 × 22 × 1 × 7

→ 88 × 7

616 cm³

Hence,

  • the surface area of a sphere is 616 cm³.

Therefore,

  • Option 1 is correct.

More Formulas:-

→ Area of rectangle = length × breadth sq.units

→ Perimeter of square = 4 × side units

→ Area of square = side × side sq.units

→ Perimeter of circle = 2πr units

→ Area of circle = πr² sq.units

→ Perimeter of parallelogram = 2 × (a + b) units

→ Area of parallelogram = base × height sq.units

→ Perimeter of rhombus = 4 × side units

→ Area of rhombus = 1/2 × diagonal (1) × diagonal (2) sq.units

→ Perimeter of equilateral triangle = 3 × side units

→ Area of equilateral triangle = √3/4 × a² = 1/2 × side × height sq.units

→ Perimeter of trapezoid = (Sum of all sides) units

→ Area of trapezoid = 1/2 × height × (sum of parallel sides) sq.units

Answered by iTzShInNy
5

☾✪Given:-✪☽

 \\

  • Radius of a sphere 7 cm

 \\

━━━━━━━ ★ ━━━━━━━

 \\

☾✪To Find:-✪☽

 \\

  • Surface area of a sphere.

 \\

━━━━━━━ ★ ━━━━━━━

 \\

☾✪Formula:-✪☽

 \\

  • Surface area of a sphere↣4πr²

 \\

━━━━━━━ ★ ━━━━━━━

 \\

☾✪Solution:-✪☽

 \\

 \small \therefore \sf Surface \: area \: of \: a \: sphere \: ⇢4\pi  {r}^{2}  \\

 \small \sf ⇢\: 4 \times  \frac{22}{7}  \times ( {7)}^{2}  \\

 \small \sf⇢ \: 4 \times  \frac{22}{ \cancel7}  \times  \cancel7 \times 7\\

 \small \sf ⇢88 \times 7 \\

 \small \sf⇢616 \: cm {}^{2}  \\

━━━━━━━ ★ ━━━━━━━

 \\

  • Hence, (a) 616 cm² is correct .

 \\

━━━━━━━ ★ ━━━━━━━

 \\

☾✪More Information:-✪☽

 \\

  •  \small \sf \: Surface \: Area  \: of \: a \: Sphere  \large\leadsto  \small \boxed{ \bf 4\pi  {r}^{2} }

 \\

  • \small \sf \: Curved \: Surface \: Area  \: of \: a \: Hemisphere  \large\leadsto  \small \boxed{ \bf 2\pi  {r}^{2} }

 \\

  • \small \sf \: Total \: Surface \: Area  \: of \: a \: Hemisphere\large\leadsto  \small \boxed{ \bf 3\pi  {r}^{2} }

 \\

  •  \small \sf \: Volume  \: of \: a \: Cuboid  \large\leadsto  \small \boxed{ \bf l \times b \times h}

 \\

  •  \small \sf \: Volume  \: of \: a \: Cube \large\leadsto  \small \boxed{ \bf  {a}^{3} }

 \\

  •  \small \sf \: Volume  \: of \: a \: Cylinder  \large\leadsto  \small \boxed{ \bf \pi  {r}^{2}h }

 \\

  •  \small \sf \: Volume  \: of \: a \:Cone\large\leadsto  \small \boxed{ \bf  \frac{1}{3}\pi r {}^{2} h }

 \\

  •  \small \sf \: Volume  \: of \: a \: Sphere \large\leadsto  \small \boxed{ \bf  \frac{4}{3} \pi r {}^{3} }

 \\

  •  \small \sf \: Volume  \: of \: a \: Hemisphere \large\leadsto  \small \boxed{ \bf  \frac{2}{3}\pi  {r}^{3}  }

 \\

━━━━━━━ ★ ━━━━━━━

 \\

Similar questions