Math, asked by krishdhingrap9n7o8, 11 months ago

Q11. If p=1+√3, then find the value of
(i) p2 + 1/p2
(ii) p4 + 1/p4

Answers

Answered by snehayaduvanshi4042
4

Answer:

hello mate here is your answer

Step-by-step explanation:

hope it's help for you

Attachments:
Answered by smithasijotsl
2

Answer:

(i) p²+ \frac{1}{p^2} = \frac{1}{2}(10 +3√3)

(ii) p⁴ + \frac{1}{p^4} = \frac{1}{4}(119 + 60√3 )

Step-by-step explanation:

Given,

p = 1+√3

To find,

(i) p² + \frac{1}{p^2}

(ii) p⁴ + \frac{1}{p^4}

Recall the formula

(a+b)² = a² + 2ab + b² ---------------(1)

Solution

Since p = 1+√3, we have

(i)  \frac{1}{p} = \frac{1}{1+\sqrt{3} }

= \frac{1}{1+\sqrt{3} }  X  \frac{1 -\sqrt{3}  }{1-\sqrt{3} }

= \frac{1 -\sqrt{3}  }{1-3 }

= \frac{1 -\sqrt{3}  }{-2}

= \frac{\sqrt{3} - 1  }{2}

Applying a = p and b = \frac{1}{p} in the identity (1), we get

(p + \frac{1}{p})² = p²+ \frac{1}{p^2} + 2×p× \frac{1}{p}

((1+\sqrt{3} ) + ( \frac{\sqrt{3} - 1  }{2} ))^2= p²+ \frac{1}{p^2} + 2

(\frac{2 +2\sqrt{3} +\sqrt{3} - 1 }{2})^2 = p²+ \frac{1}{p^2} + 2

(\frac{1 +3\sqrt{3} }{2})^2 = p²+ \frac{1}{p^2} + 2

(\frac{1 +9X3 + 2X3\sqrt{3}  }{2})^2 = p²+ \frac{1}{p^2} + 2

\frac{28+ 6\sqrt{3}  }{4} - 2 = p²+ \frac{1}{p^2}

+ \frac{1}{p^2} = \frac{28+ 6\sqrt{3} -8 }{4}

=  \frac{20+ 6\sqrt{3} }{4}

= \frac{10+ 3\sqrt{3} }{2}

∴ p²+ \frac{1}{p^2} =  \frac{10+ 3\sqrt{3} }{2}

(ii) We have p²+ \frac{1}{p^2} =  \frac{10+ 3\sqrt{3} }{2}

( p²+ \frac{1}{p^2} )²= ( \frac{10+ 3\sqrt{3} }{2}

p⁴ + \frac{1}{p^4} + 2×× \frac{1}{p^2} = \frac{1}{4}(10² + 3² × 3 + 2×10×3√3)

p⁴ + \frac{1}{p^4} + 2 =  \frac{1}{4}(100 + 27 + 60√3)

=  \frac{1}{4}(127 + 60√3)

p⁴ + \frac{1}{p^4} =   \frac{1}{4}(127 + 60√3) - 2

=  \frac{1}{4}(127 + 60√3 - 8)

=  \frac{1}{4}(119 + 60√3 )

p⁴ + \frac{1}{p^4} = \frac{1}{4}(119 + 60√3 )

(i)p²+ \frac{1}{p^2} = \frac{1}{2}(10 +3√3)

(ii) p⁴ + \frac{1}{p^4} = \frac{1}{4}(119 + 60√3 )

#SPJ2

Similar questions