Math, asked by gauravpatelgpp, 1 month ago

Q11)If the side of a square is (1/3)a+(4/5)b , its area would be​

Answers

Answered by kithu13
3

side of the square =

 \frac{1}{3} a +  \frac{4}{5} b

area of the square

 = {(  \frac{1}{3} a +  \frac{4}{5} b)}^{2}  \\  \\ =  { (\frac{1}{3}a)}^{2}  + (2 \times  \frac{1}{3}a \times  \frac{4}{5}b  ) +  {( \frac{4}{5} b)}^{2} \\  \\  =  { (\frac{1}{3}) }^{2}   {a}^{2} +  ( \frac{8}{15} ab) +  {( \frac{4}{5} )}^{2}  {b}^{2} \\  \\  =  \frac{1}{9}   {a}^{2}  +  \frac{8}{15} ab +  \frac{16}{25}  {b}^{2}

hope it helps...

Answered by shashwatabanerjee08
0

Answer:

side of the square =

\frac{1}{3} a + \frac{4}{5} b

3

1

a+

5

4

b

area of the square

\begin{gathered} = {( \frac{1}{3} a + \frac{4}{5} b)}^{2} \\ \\ = { (\frac{1}{3}a)}^{2} + (2 \times \frac{1}{3}a \times \frac{4}{5}b ) + {( \frac{4}{5} b)}^{2} \\ \\ = { (\frac{1}{3}) }^{2} {a}^{2} + ( \frac{8}{15} ab) + {( \frac{4}{5} )}^{2} {b}^{2} \\ \\ = \frac{1}{9} {a}^{2} + \frac{8}{15} ab + \frac{16}{25} {b}^{2} \end{gathered}

=(

3

1

a+

5

4

b)

2

=(

3

1

a)

2

+(2×

3

1

5

4

b)+(

5

4

b)

2

=(

3

1

)

2

a

2

+(

15

8

ab)+(

5

4

)

2

b

2

=

9

1

a

2

+

15

8

ab+

25

16

b

2

hope it helps...

Similar questions