Math, asked by veerbhadra13112005, 28 days ago

Q12. If w is a complex cube root of unity then show that,(1-W+w2)5+(1+W-w2)5=32​

Answers

Answered by jitendra12iitg
0

Answer:

See the explanation

Step-by-step explanation:

Concept : If \omega is a complex cube root of unity, then

                      1+\omega+\omega^2=0 and \omega^3=1

Here

      \text{LHS}=(1-\omega+\omega^2)^5+(1+\omega-\omega^2)^5

              =[(1+\omega^2)-\omega]^5+[(1+\omega)-\omega^2]^5

              =[(-\omega)-\omega]^5+[(-\omega^2)-\omega^2]^5 using 1+\omega+\omega^2=0

              =(-2\omega)^5+(-2\omega^2)^5\\=(-2)^5(\omega^5)-(2)^5(\omega^{10})\\=-32(\omega^3\times \omega^2)-32(\omega^9\times \omega)

             =-32(1\times \omega^2)-32(1\times \omega), using \omega^3=1

             =-32(\omega^2+\omega)\\=-32(-1)=32=\text{RHS}, since 1+\omega+\omega^2=0

Hence proved

Similar questions