Math, asked by saryka, 1 month ago

Q13. If N = \it{\dfrac{\sqrt{\sqrt{5}+2}+\sqrt{\sqrt{5}-2}}{\sqrt{\sqrt{5}+1}}-\sqrt{3-2\sqrt{2}}}, then N equals ___.​

Attachments:

Answers

Answered by user0888
81

(Minor edit in the calculation process.)

Question

If N=\dfrac{\sqrt{\sqrt{5} +2} +\sqrt{\sqrt{5} -2}}{\sqrt{\sqrt{5} +1} }-\sqrt{3-2\sqrt{2} }, then N equals _.

___________________________________

Required Knowledge

  • Radical Notation

A radical consists of radicand, index, and radical symbol. It is the opposite process to the exponent. Let's consider an example, \sqrt[3]{8}.

Radicand 8

Index 3

This means the cube of the number is 8.

One more important thing about the index is that an even index considers only the positive root.

___________________________________

Solution

Consider the two terms as

  • A=\dfrac{\sqrt{\sqrt{5} +2} +\sqrt{\sqrt{5} -2}}{\sqrt{\sqrt{5} +1} }
  • B=\sqrt{3-2\sqrt{2} }

Simplifying A

First, the value of A^2 is 2. Then, A=\sqrt{2} since A>0.

\implies A^2=\dfrac{\sqrt{5} +2+2\sqrt{(\sqrt{5} +2)(\sqrt{5} -2)} +\sqrt{5} -2}{\sqrt{5} +1}

\implies A^2=\dfrac{2\sqrt{5} +2\sqrt{5-4} }{\sqrt{5} +1}

\implies A^2=\dfrac{2\sqrt{5} +2}{\sqrt{5} +1}=\boxed{2}

\therefore A=\sqrt{2}

Simplifying B

Then, the value of B^2 is 3-2\sqrt{2}. Then, B=\sqrt{2} -1 since B>0.

Considering B as a sum of irrational and rational parts,

B^2= 2-2\sqrt{2} +1=(\sqrt{2} -1)^2

\therefore B=\sqrt{2} -1

___________________________________

If N=\dfrac{\sqrt{\sqrt{5} +2} +\sqrt{\sqrt{5} -2}}{\sqrt{\sqrt{5} +1} }-\sqrt{3-2\sqrt{2} }, then N equals 1.

This is the required answer.

Answered by mathdude500
41

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\:N = \sf{\dfrac{\sqrt{\sqrt{5}+2}+\sqrt{\sqrt{5}-2}}{\sqrt{\sqrt{5}+1}}-\sqrt{3-2\sqrt{2}}}

Let assume that

 \red{\bf :\longmapsto\:N = A  -  B} -  -  -  - (1)

where,

\rm :\longmapsto\:A = \sf{\dfrac{\sqrt{\sqrt{5}+2}+\sqrt{\sqrt{5}-2}}{\sqrt{\sqrt{5}+1}}}

and

\rm :\longmapsto\:B \:  =  \:  \sqrt{3 - 2 \sqrt{2} }

Consider,

 \blue{\bf :\longmapsto\:B \:  =  \:  \sqrt{3 - 2 \sqrt{2} } }

\rm \:  =  \:  \:  \sqrt{2 + 1 - 2 \sqrt{2} }

\rm \:  =  \:  \:  \sqrt{ {( \sqrt{2})}^{2}  +  {(1)}^{2} - 2 \times \sqrt{2}  \times 1}

\rm \:  =  \:  \:  \sqrt{ {( \sqrt{2} -  1) }^{2} }

\rm \:  =  \:  \:  \sqrt{2}  -  1

 \blue{\bf\implies \: \sqrt{3 - 2 \sqrt{2}}  =  \sqrt{2}  - 1 -  -  -  - (2)}

Now,

Consider,

 \green{\bf :\longmapsto\:A = \sf{\dfrac{\sqrt{\sqrt{5}+2}+\sqrt{\sqrt{5}-2}}{\sqrt{\sqrt{5}+1}}}}

\rm \:  =  \:  \: \dfrac{ \sqrt{ \sqrt{5} + 2 } }{ \sqrt{ \sqrt{5} + 1} }  +  \dfrac{ \sqrt{ \sqrt{5}  -  2 } }{ \sqrt{ \sqrt{5} + 1} }

\rm \:  =  \:  \: C + D

where,

\rm :\longmapsto\:C = \dfrac{ \sqrt{ \sqrt{5} + 2 } }{ \sqrt{ \sqrt{5} + 1} }

and

\rm :\longmapsto\:D = \dfrac{ \sqrt{ \sqrt{5}  -  2 } }{ \sqrt{ \sqrt{5} + 1} }

\rm :\implies\:A = C + D -  -  - (3)

Consider,

\rm :\longmapsto\:C = \dfrac{ \sqrt{ \sqrt{5} + 2 } }{ \sqrt{ \sqrt{5} + 1} }

On rationalizing the denominator, we get

\rm :\longmapsto\:C = \dfrac{ \sqrt{ \sqrt{5} + 2 } }{ \sqrt{ \sqrt{5} + 1} } \times \dfrac{ \sqrt{ \sqrt{5}  - 1 } }{ \sqrt{ \sqrt{5}  -  1} }

\rm :\longmapsto\:C = \dfrac{ \sqrt{ (\sqrt{5} + 2)( \sqrt{5} - 1)  } }{ \sqrt{ (\sqrt{5} + 1)( \sqrt{5}  - 1)} }

\rm :\longmapsto\:C = \dfrac{ \sqrt{5 + 2 \sqrt{5} -  \sqrt{5}  - 2 } }{ \sqrt{5 - 1} }

 \:  \:  \:  \:  \: \red{\bigg \{ \because \:(x + y)(x - y) =  {x}^{2} -  {y}^{2}\bigg \}}

\rm :\longmapsto\:C = \dfrac{ \sqrt{3 +  \sqrt{5} } }{ \sqrt{4} }

\rm :\longmapsto\:C =  \sqrt{\dfrac{3 +  \sqrt{5} }{4} }

\rm :\longmapsto\:C =  \sqrt{\dfrac{6 +  2\sqrt{5} }{8} }

\rm :\longmapsto\:C =  \sqrt{\dfrac{5 +1   + 2\sqrt{5} }{8} }

\rm :\longmapsto\:C =  \sqrt{\dfrac{ {( \sqrt{5})}^{2}  + {(1)}^{2}   + 2\sqrt{5} }{8} }

\rm :\longmapsto\:C =  \sqrt{\dfrac{ {( \sqrt{5} + 1)}^{2} }{8} }

\bf\implies \:C = \dfrac{ \sqrt{5}  + 1}{2 \sqrt{2} }  -  -  - (4)

Consider,

\rm :\longmapsto\:D = \dfrac{ \sqrt{ \sqrt{5}  -  2 } }{ \sqrt{ \sqrt{5} + 1} }

On rationalizing the denominator, we get

\rm :\longmapsto\:D = \dfrac{ \sqrt{ \sqrt{5}  -  2 } }{ \sqrt{ \sqrt{5} + 1} } \times \dfrac{ \sqrt{ \sqrt{5}  - 1 } }{ \sqrt{ \sqrt{5}  -  1} }

\rm :\longmapsto\:D = \dfrac{ \sqrt{ (\sqrt{5}  -  2)( \sqrt{5} - 1)  } }{ \sqrt{ (\sqrt{5} + 1)( \sqrt{5}  - 1)} }

\rm :\longmapsto\:D = \dfrac{ \sqrt{5  -  2 \sqrt{5} -  \sqrt{5}   + 2 } }{ \sqrt{5 - 1} }

\rm :\longmapsto\:D = \dfrac{ \sqrt{7  - 3\sqrt{5} } }{ \sqrt{4} }

\rm :\longmapsto\:D =  \sqrt{\dfrac{7  - 3\sqrt{5} }{4} }

\rm :\longmapsto\:D =  \sqrt{\dfrac{14  - 6\sqrt{5} }{8} }

\rm :\longmapsto\:D =  \sqrt{\dfrac{9 + 5  - 6\sqrt{5} }{8} }

\rm :\longmapsto\:D =  \sqrt{\dfrac{ {(3)}^{2}  +  {( \sqrt{5}) }^{2}   - 2 \times 3 \times \sqrt{5} }{8} }

\rm :\longmapsto\:D =  \sqrt{\dfrac{ {(3 -  \sqrt{5} )}^{2} }{8} }

\bf\implies \:D = \dfrac{ 3 - \sqrt{5}}{2 \sqrt{2} }  -  -  - (5)

On substituting the values of C and D in equation (3), we get

\rm :\longmapsto\:A = \dfrac{ \sqrt{5} + 1 }{2 \sqrt{2} }  + \dfrac{3 -  \sqrt{5} }{2 \sqrt{2} }

\rm :\longmapsto\:A = \dfrac{ \sqrt{5} + 1  + 3 -  \sqrt{5} }{2 \sqrt{2} }

\rm :\longmapsto\:A = \dfrac{ 4 }{2 \sqrt{2} }

\rm :\longmapsto\:A = \dfrac{ 2 \times  \sqrt{2} \times  \sqrt{2}  }{2 \sqrt{2} }

 \green{\bf\implies \:A =  \sqrt{2} -  -  - (6)}

On substituting the values of A and B from equation (2) and equation (6), we get

 \red{\rm :\longmapsto\:N =  \sqrt{2} - ( \sqrt{2} - 1)}

 \red{\rm :\longmapsto\:N =  \sqrt{2} - \sqrt{2}  + 1}

 \red{\bf\implies \:N = 1}

Similar questions