Q13 Obtain all the zeros of the polynomial
f (x) = 2x4+x3_14x2-192, of two of
its zeros are-2 and 1.
Answers
Answered by
0
Answer:
Since two zeroes are -2 and -1
then (X+2)(X+1) = x² +x+2x +2 = x²+3x +2 is a factor of the given polynomial. Now we divide the given polynomial by x²+3x +2
(2x⁴+x³-14x²-19x -6)/ (x²+3x +2)= 2x²-5x-3
or
use attachment here
So 2x⁴+x³-14x²-19x -6= (x²+3x +2)(2x²-5x-3)
Now we factorise 2x²-5x-3
2x²-5x-3 = 0
2x²-6x + x-3= 0
2x (x -3)+1(x-3)=0
(2x+1)(x-3)=0
2x +1 = 0 or x-3 = 0
X=-1/2 or X= 3
Therefore,the zeroes of the given polynomial are -2,-1,-1/2 and 3
Step-by-step explanation:
above⬆ is answer Mark me as brainlist please
Similar questions