Math, asked by risingsamrat5492, 3 months ago

Q14: Find the quadratic polynomial whose zeroes are 3.-2, the graph of which passes through (0,6)​

Answers

Answered by Taqdees22
0

Answer:

Answer: The quadratic polynomial is \mathbf{-x^{2}+x+6}−x

2

+x+6

Step-by-step explanation:

1. Let quadratic polynomial is

\mathbf{y= ax^{2}+bx+c}y=ax

2

+bx+c ...1)

2. Since quadratic polynomial have zeros 3 and -2. It means

At x=3 , y=0 ...2)

and also

At x= -2 , y=0 ...3)

3. It is also given that point (0,6) lie on curve. It means

At x=0 , y =6 ...4)

4. Now from equation 1) and equation 4), we get

\mathbf{y= ax^{2}+bx+c}y=ax

2

+bx+c

\mathbf{6= a(0)^{2}+b\times 0+c}6=a(0)

2

+b×0+c

\mathbf{6= 0+0+c}6=0+0+c

So

c=6

5. Now equation 1) can be written as

\mathbf{y= ax^{2}+bx+c}y=ax

2

+bx+c

\mathbf{y= ax^{2}+bx+6}y=ax

2

+bx+6 ...5)

6. Now from equation 2) and equation 5)

\mathbf{y= ax^{2}+bx+6}y=ax

2

+bx+6

\mathbf{0= a(3)^{2}+b\times 3+6}0=a(3)

2

+b×3+6

\mathbf{0= 9a+3b+6}0=9a+3b+6

\mathbf{9a+3b=-6}9a+3b=−6

This can be written as

\mathbf{3a+b=-2}3a+b=−2 ...6)

7. Now from equation 3) and equation 5)

\mathbf{y= ax^{2}+bx+6}y=ax

2

+bx+6

\mathbf{0= a(-2)^{2}+b\times (-2)+6}0=a(−2)

2

+b×(−2)+6

\mathbf{0= 4a-2b+6}0=4a−2b+6

\mathbf{4a-2b=-6}4a−2b=−6

This can be written as

\mathbf{2a-b=-3}2a−b=−3 ...7)

8. On adding equation 6) and equation 7)

\mathbf{5a=-5}5a=−5

\mathbf{a=-1}a=−1 ...8)

9. Now from equation 8) and equation 7)

\mathbf{2a-b=-3}2a−b=−3

\mathbf{2(-1)-b=-3}2(−1)−b=−3

\mathbf{-2-b=-3}−2−b=−3

So

\mathbf{b=1}b=1 ...9)

10. Now from equation 9), equation 8) and equation 5)

\mathbf{y= ax^{2}+bx+6}y=ax

2

+bx+6

\mathbf{y= -x^{2}+x+6}y=−x

2

+x+6 ...10)

Equation 10) is required quadratic polynomial.

Answered by dharuvrajpurohit86
0

Answer:

×40/8÷#£)(:€=[>|~♤0~6}>[

~guy2y9q3fhw36jtzib4

jj6m

6ji

n

j7j

6h

6j7

Similar questions