English, asked by Anonymous, 4 months ago

Q14. The value of 'k'such that the line (k-2)x + (k = 3)y - 5 = 0 is
perpendicular to the line 2x - y + 7 = 0.

Give answer correctly if not, then go away.
❌ no spam ❌​

Answers

Answered by Anonymous
2

Answer:

i am fool for u

Explanation:

not for others....lol

Answered by PrincessKanishka
6

Answer:

Given  \: line \:  equation \\ </p><p></p><p>(k−2)x+(k+3)y−5=0 (1) \\ </p><p></p><p>(k+3)y=−(k−2)x+5</p><p></p><p>

y = ( \frac{2 - k}{k + 3} )x +  \frac{5}{k + 3}

Slope of this line =m1=( \frac{(2 - k)}{(k + 2)}

Given, 2x−y+7=0 \\ </p><p>y=2x+7=0 \\ </p><p></p><p>Slope of this line =m2=2 \\ </p><p></p><p></p><p>Given that, line (1) is   \\ perpendicular to  \\ \: 2x−y+7=0  \\ </p><p></p><p>m1×m2=−1 \\ </p><p></p><p>

 \frac{(2 - k)}{(k + 3)}  \:  \times 2 =  - 1

4−2k=−k−3 \\ </p><p></p><p>k=7</p><p></p><p>

hope \: it \: helps \: you

a \: request \:  =  \: could \: you \: \\  please \: thank \: my \: answers \: plz \:

Similar questions