Physics, asked by tarsemsingh3512, 7 months ago

Q16. A15°F capacitor is connected
a 220V, 50Hz a.c. supply. Its
capacitive reactance is​

Answers

Answered by TheVenomGirl
14

AnswEr :

We're given with a 15 µF capacitor is connected to a 220 V, 50 Hz A.C. supply. And we've to calculate it's capacitive reactance.

⠀⠀⠀⠀⠀⠀⠀

Now, to calculate capacitive reactance we know the required formula, that is,

⠀⠀⠀⠀⠀⠀⠀

 \:  \:  \:  \:  \: \dag \: { \underline{ \boxed{ \sf{ \purple {\:  \: X_c = \dfrac{1}{2\pi fC}}}}}}

⠀⠀⠀⠀⠀⠀⠀

Where, Xc is the capacitive reactance, f is the frequency and C is the given capacitance.

⠀⠀⠀⠀⠀⠀⠀

So, we've the given information, that is,

⠀⠀⠀⠀⠀⠀⠀

  • Frequency (f) = 50 Hz

⠀⠀⠀⠀⠀⠀⠀

  • Capacitance (C) = 15 µF = 15 x 10⁻⁶ F [Conversion]

⠀⠀⠀⠀⠀⠀⠀

Now, let's substitute the given values in the above formula.

⠀⠀⠀⠀⠀⠀⠀

:\implies \sf \:  \: X_c = \dfrac{1}{2\pi fC} \\  \\  \\

:\implies \sf \:  \: X_c = \dfrac{1}{2\pi  \times 50 \times 15 \times  {10}^{ - 6} } \\  \\  \\

:\implies \sf \:  \: X_c = \dfrac{1}{100\pi  \times 15 \times  {10}^{ - 6} } \\  \\  \\

:\implies \sf \:  \: X_c = \dfrac{1}{1500\pi  \times  {10}^{ - 6} } \\  \\  \\

:\implies \sf \:  \: X_c = \dfrac{1}{1500 \times 3.14 \times  {10}^{ - 6} } \\  \\  \\

:\implies \sf \:  \: X_c = \dfrac{1}{4710 \times  {10}^{ - 6} } \\ \\  \\

:\implies \sf \:  \: X_c = \dfrac{1}{4710 } \times  \dfrac{1}{{10}^{ - 6}} \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \bigg(rewriting \: the \: eqn) \\  \\  \\

:\implies \sf \:  \: X_c =  \bigg(\dfrac{0.0002123}{{10}^{ - 6}} \bigg)\\  \\  \\

:\implies \sf \:  \: { \underline{ \boxed{ \frak{ \red{X_c = 212.3 \: \Omega}}}}} \\  \\

Hence, capacitive reactance is 212.3 Ω.

Similar questions