Math, asked by saryka, 3 months ago

Q16. If r < 1 and positive and m is a positive integer, show that \sf{(2m+1)r^m(1-r)&lt;1-r^{(2m+1)}}. And also show that, nrⁿ is indefinitely small when n is indefinitely great.​

Answers

Answered by mathdude500
100

\large\underline{\sf{Solution-}}

Given that

r < 1

It means 1 - r > 0

So,

\rm :\longmapsto\: {(1 -  {r}^{m} )}^{2}  &gt; 0

\rm :\longmapsto\:1 +  {r}^{2m}  - 2 {r}^{m}  &gt; 0

\bf\implies \:1 +  {r}^{2m} &gt; 2 {r}^{m}

can be rewritten as

\rm :\longmapsto\:1 + {r}^{2m} &gt; 2 \sqrt{{r}^{2m} \times 1}

\rm :\implies\:AM &gt; GM

Let consider Arithmetic mean and Geometric mean relationship between

\rm :\longmapsto\:r \: and \:  {r}^{2m - 1}

\rm :\longmapsto\:r + {r}^{2m - 1} \geqslant  2 \sqrt{r \times {r}^{2m - 1} }

\rm :\longmapsto\:r + {r}^{2m - 1} \geqslant  2 \sqrt{{r}^{2m - 1 + 1} }

\rm :\longmapsto\:r + {r}^{2m - 1} \geqslant  2 \sqrt{{r}^{2m} }

\rm :\longmapsto\:r + {r}^{2m - 1} \geqslant  2{r}^{m}  -  -  - (2)

Let consider Arithmetic mean and Geometric mean relationship between

\rm :\longmapsto\: {r}^{2}  \: and \: {r}^{2m - 2}

\rm :\longmapsto\: {r}^{2}  + {r}^{2m - 2} \geqslant  2 \sqrt{ {r}^{2}  \times {r}^{2m - 2} }

\rm :\longmapsto\: {r}^{2}  + {r}^{2m - 1} \geqslant  2 \sqrt{{r}^{2m - 2 + 2} }

\rm :\longmapsto\: {r}^{2}  + {r}^{2m - 1} \geqslant  2 \sqrt{{r}^{2m} }

\rm :\longmapsto\: {r}^{2}  + {r}^{2m - 1} \geqslant  2 {r}^{m}  -  -  - (3)

and

so on

Let consider Arithmetic mean and Geometric mean relationship between

\rm :\longmapsto\:{r}^{m} \: and \: {r}^{m}

\rm :\longmapsto\:{r}^{m }  + {r}^{m}  \geqslant 2 \sqrt{{r}^{2m} }

\rm :\longmapsto\:{r}^{m }  + {r}^{m}  \geqslant 2  {r}^{m}   -  -  - (4)

On adding these m + 1 equations, we get

 \rm \: (1 + r +  {r}^{2} +  -  -  +  {r}^{2m}) +  {r}^{m}  &gt;  2(m + 1){r}^{m}

 \rm \: (1 + r +  {r}^{2} +  -  -  +  {r}^{2m}) &gt;  2(m + 1){r}^{m} -  {r}^{m}

 \rm \: (1 + r +  {r}^{2} +  -  -  +  {r}^{2m}) &gt;  (2m + 2){r}^{m} -  {r}^{m}

 \rm \: (1 + r +  {r}^{2} +  -  -  +  {r}^{2m}) &gt;  (2m + 2 - 1){r}^{m}

 \rm \: (1 + r +  {r}^{2} +  -  -  +  {r}^{2m}) &gt;  (2m + 1){r}^{m}

Left hand is a GP series consisting of 2m + 1 terms having first term unity and common ratio r < 1.

So, LHS can be represented by sum of 2m + 1 terms as

\rm :\longmapsto\:\dfrac{1(1 -  {r}^{2m + 1} )}{1 - r} &gt; (2m + 1){r}^{m}

\rm :\longmapsto\:\dfrac{1 -  {r}^{2m + 1} }{1 - r} &gt; (2m + 1){r}^{m}

\rm :\longmapsto\:1 -  {r}^{2m + 1} &gt; (2m + 1){r}^{m}(1 - r)

\bf\implies \:\: (2m + 1){r}^{m}(1 - r) &lt; 1 -  {r}^{2m + 1}

Hence, Proved

Now, we further know that

\rm :\longmapsto\:x \in \: (0,1) \: then \:  {x}^{n}  \to \: 0 \: if \: n \: is \: very \: large

In above relationship, that we prove

Let n = m

\bf\implies \:\: (2n + 1){r}^{n}(1 - r) &lt; 1 -  {r}^{2n + 1}

\bf\implies \:\: (2n + 1){r}^{n} &lt;( 1 -  {r}^{2n + 1})  \div (1 - r)

\bf\implies \:\: 2n {r}^{n}  + {r}^{n} &lt;( 1 -  {r}^{2n + 1})  \div (1 - r)

\bf\implies \:\: 2n {r}^{n}  &lt;( 1 -  {r}^{2n + 1})  \div (1 - r) \:  -  \:  {r}^{n}

\bf\implies \:\: 2n {r}^{n}  &lt;1

\bf\implies \:\: n {r}^{n}  &lt; \dfrac{1}{2}

Hence,

\bf\implies \: {nr}^{n}  \: is \: very \: small

Similar questions